文章主要内容和创新点
主要内容
本文针对大型语言模型(LLMs)在长期交互中难以持续记住和整合用户特定偏好的问题,提出了Pref-LSTM框架。该框架是一个动态且轻量级的系统,结合了基于BERT的分类器和LSTM记忆模块:
- 基于BERT的分类器用于识别用户对话中的偏好信息(包括显式和隐式偏好),通过合成的偏好与非偏好对话数据集进行训练;
- LSTM记忆模块用于生成记忆嵌入,并将其作为软提示注入冻结的LLM中,以实现个性化响应。
实验结果显示,BERT分类器在识别用户偏好方面表现可靠,但LSTM记忆编码器未取得理想结果。研究证实,使用偏好过滤和LSTM门控原理进行用户偏好建模是可行的,且无需大量开销和微调。
创新点
- 提出了一种动态的、受LSTM启发的记忆存储系统,能够随上下文不断演化,持续更新用户偏好记忆;
- 评估了该方法在偏好跟随任务上与基线模型的性能,并与其他偏好跟随方法进行了对比,为LLM的长期个性化交互提供了新思路。
翻译部分
## Abstract(摘要)
大型语言模型(LLMs)的记忆存储正成为一个日益活跃的研究领域,特别是在实现长期对话中的个性化方面。我们提出了Pref-LSTM,这是一个动态且轻量级的框架,它结合了基于BERT的分类器和LSTM记忆模块,该模块生成记忆嵌入,然后将其作为软提示注入冻结的LLM中。我们合成了一个包含偏好