文章主要内容总结
本文聚焦大型语言模型(LLMs)的高效压缩技术,针对结构化稀疏化方法的局限性(如灵活性不足、对异常值权重敏感)展开研究,核心内容包括:
-
研究背景:随着LLMs规模增长,量化和稀疏化等压缩技术至关重要。现有N:M结构化稀疏(如2:4)因灵活性有限、硬件支持单一、易受异常值权重影响,难以达到“性能阈值”(压缩模型与未压缩模型在同等内存下精度相当)。
-
8:16半结构化稀疏模式:对比2:4与8:16稀疏模式,发现8:16虽存储开销略高(0.875 bits/元素 vs 0.2:4的0.75 bits/元素),但灵活性显著提升(12,870种配置 vs 2:4的1,296种),能超过性能阈值,例如稀疏化的LLaMA2-13B模型可匹配 dense LLaMA2-7B的精度,同时降低计算开销。
-
结构化异常值权重存储(SSP FOR SW):提出使用结构化稀疏模式(如4:256/8:256/16:256)存储关键异常值权重,相比非结构化方法,既能提升性能,又能保持硬件效率(如减少内存访问不规则性)。
-
预处理与后处理技术:
- 改编SmoothQuant方法用于稀疏化,通过权重与激活的缩放平衡重要性分布;
- 提出方差校正(VC)技术,补偿修剪导致的权重分布偏移;
- 结合块级微调(EBFT),进一步提升压缩模型性能。
<