MGAA: Multi-Granular Adaptive Allocation for Low-Rank Compression of LLMs

在这里插入图片描述

文章主要内容和创新点

主要内容

本文提出了一种用于大语言模型(LLMs)低秩压缩的多粒度自适应分配(MGAA)方法,旨在解决现有低秩近似压缩方法中存在的问题:多数方法对所有权重矩阵采用统一压缩比,忽略其对模型性能的差异化影响;而少数启发式搜索策略存在计算效率低、泛化能力弱(偏向特定任务)的缺陷。

MGAA通过两级自适应参数分配实现高效压缩:

  1. 子层间(inter-sublayer):基于子层输入与输出特征的余弦相似度评估子层重要性,为重要子层分配更低的压缩比(保留更多参数),非重要子层分配更高的压缩比。
  2. 子层内(intra-sublayer):基于权重矩阵的能量分布(特征值分布),在保证各矩阵能量保留率一致的前提下,为不同权重矩阵分配不同压缩比,确保模型性能稳定。

实验验证显示,MGAA在多个LLMs(LLaMA1、Vicuna、LLaMA3、Mistral等)和基准数据集上性能优于现有低秩方法,且在多模态模型LLaVA上也表现出显著提升。此外,MGAA可作为“即插即用”模块与多种低秩近似技术结合,泛化能力强。

创新点
  1. 子层级压缩比分配策略:基于输入与输出特征的余弦相似度量化子层重要性,自
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值