一、文章主要内容和创新点
主要内容
本文介绍了Qwen-Image,一款Qwen系列的图像生成基础模型,其核心优势在于复杂文本渲染和精确图像编辑。
- 文本渲染优化:通过构建大规模数据 pipeline(包含数据收集、过滤、标注、合成与平衡),结合渐进式训练策略(从非文本任务过渡到文本渲染,从简单文本到段落级描述),显著提升了模型对多语言(尤其是中文等表意文字)的文本渲染能力。
- 图像编辑增强:提出改进的多任务训练范式,整合文本到图像(T2I)、文本-图像到图像(TI2I)、图像到图像(I2I)重建任务,并设计双编码机制——通过Qwen2.5-VL获取语义表示、通过VAE编码器获取重建表示,实现语义一致性与视觉保真度的平衡。
- 性能评估:在GenEval、DPG等通用生成基准,GEdit、ImgEdit等编辑基准,以及LongText-Bench、ChineseWord等文本渲染基准上均达到当前最优水平,尤其在中文文本生成上显著超越现有模型。
创新点
- 复杂文本渲染方案:通过全面的数据工程(大规模高质量数据+合成数据)和渐进式课程学习,首次实现对段落级、多语言(尤其是中文)文本的高保真渲染。
- 图像编辑一致性机制:融合多任务训练与双编码机制,解决了编辑中“视觉一致性”(仅修改目标区域)和“语义连贯性”(保持全局语义)的双重挑战。</