Efficient Knowledge Probing of Large Language Models by Adapting Pre-trained Embeddings

在这里插入图片描述
在这里插入图片描述

一、文章主要内容

本文聚焦大型语言模型(LLMs)知识探测的效率问题,提出了名为PEEK(Proxy Embeddings to Estimate Knowledge)的框架,旨在通过预训练嵌入模型作为代理,高效估算LLMs的知识储备,避免传统探测方法中大量计算成本高的模型前向传播操作。

1. 研究背景

LLMs在生成式预训练中获取了多领域知识,但由于随机性和训练数据的复杂性,其知识储备难以预测。传统知识探测方法(如设计特定提示、分析隐藏表示、估算不确定性)需频繁调用LLMs进行前向传播,对计算资源消耗大,尤其不适用于超大型或黑箱LLMs。同时,预训练嵌入模型(文本嵌入、图嵌入)在文本和知识图谱表示学习中表现出色,且与LLMs存在预训练数据重叠和架构相似性,具备作为LLMs知识探测代理的潜力。

2. 核心方法(PEEK框架)

  • 知识探测函数:设计4种方式判断LLMs是否掌握某一事实,包括二元生成(Yes/No问答)、二元对数生成(提取正确token的对数概率)、二元激活预测(基于LLMs隐藏层激活训练线性头分类)、事实生
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值