一、文章主要内容
本文聚焦大型语言模型(LLMs)知识探测的效率问题,提出了名为PEEK(Proxy Embeddings to Estimate Knowledge)的框架,旨在通过预训练嵌入模型作为代理,高效估算LLMs的知识储备,避免传统探测方法中大量计算成本高的模型前向传播操作。
1. 研究背景
LLMs在生成式预训练中获取了多领域知识,但由于随机性和训练数据的复杂性,其知识储备难以预测。传统知识探测方法(如设计特定提示、分析隐藏表示、估算不确定性)需频繁调用LLMs进行前向传播,对计算资源消耗大,尤其不适用于超大型或黑箱LLMs。同时,预训练嵌入模型(文本嵌入、图嵌入)在文本和知识图谱表示学习中表现出色,且与LLMs存在预训练数据重叠和架构相似性,具备作为LLMs知识探测代理的潜力。
2. 核心方法(PEEK框架)
- 知识探测函数:设计4种方式判断LLMs是否掌握某一事实,包括二元生成(Yes/No问答)、二元对数生成(提取正确token的对数概率)、二元激活预测(基于LLMs隐藏层激活训练线性头分类)、事实生