ubuntu深度学习环境安装和配置

一、使用操作系统自带的NVIDIA驱动命令行安装(推荐)

参考的博客

https://blog.csdn.net/qq_43744723/article/details/119111928?spm=1001.2014.3001.5502

https://blog.csdn.net/qq_43744723/article/details/123959160

https://blog.csdn.net/weixin_52213331/article/details/128282686?spm=1001.2014.3001.5502

https://blog.csdn.net/youlinhuanyan/article/details/128736599

1、检测可用驱动

ubuntu-drivers devices

2、驱动安装

2.1、选择后面 有recommend 的驱动
# 如:sudo apt install nvidia-driver-470
2.2、或者Win+A打开 APP的Additional Driver,然后在附加驱动,选择驱动下载也可以

3、成功结果:

输入命令: nvidia-smi,有类似下面的界面出现,则成功安装:

二、Cuda安装

参考:https://blog.csdn.net/CC977/article/details/122789394

https://blog.csdn.net/qq_43644413/article/details/124899366(主要)

1、CUDA安装包下载

(1)首先查看自身电脑最高支持的cuda版本为多少,在终端输入以下指令

nvidia-smi

从输出的右上角,可以看到我的最高支持 cuda 11.4 。

(2)到cuda-toolkit-archive,选择需要的CUDA下载

如下图,选择runfile(local),并使用生成的指令进行下载和安装

此处我下载的是cuda 11.0.3 版本,并选择相应配置,复制指令至终端下载

根据命令下载与安装

# 安装命令,也可以直接赋值网址进行下载
wget https://developer.download.nvidia.com/compute/cuda/11.0.3/local_installers/cuda_11.0.3_450.51.06_linux.run
# 运行文件进行安装
sudo sh cuda_11.0.3_450.51.06_linux.run

2、Cuda的安装

2.1 若第1步提示Existing package manager installation of the driver found. It is strongly recommended that you remove this before continuing.,选择continue,在下一步中去除driver项,之后选择install:

2.2 安装完成后,显示如下:

2.3 在~/.bashrc文件中添加如下环境变量:

export PATH=$PATH:/usr/local/cuda-11.0/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.0/lib64
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/cuda-11.0/lib64

2.4 保存、更新环境变量

source ~/.bashrc

2.5 输入nvcc -V查看版本号

nvcc -V

三、Cudnn安装

参考代码:

https://blog.csdn.net/wanzhen4330/article/details/81699769/?ops_request_misc=&request_id=&biz_id=102&utm_term=ubuntu%20cuda%20cudnn&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-2-81699769.142^v75^control,201^v4^add_ask,239^v2^insert_chatgpt&spm=1018.2226.3001.4187

https://blog.csdn.net/qq_43744723/article/details/119135242?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522167945193716800227411663%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=167945193716800227411663&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduend~default-3-119135242-null-null.142^v75^control,201^v4^add_ask,239^v2^insert_chatgpt&utm_term=ubuntu%20cuda%20cudnn&spm=1018.2226.3001.4187

1. 进入官网 ,寻找合适的 cudnn 版本,下载对应版本的cudnn 的 runtime developer 和samples

2. 下载得到四个文件

3. 安装上述软件包

tar -zxvf cudnn-11.0-linux-x64-v8.0.4.30.tgz
sudo cp -rf cuda/include/cudnn* /usr/local/cuda/include/
sudo cp -rf cuda/lib64/libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn*
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*
 
sudo dpkg -i libcudnn8_8.0.4.30-1+cuda11.0_amd64.deb
sudo dpkg -i libcudnn8-dev_8.0.4.30-1+cuda11.0_amd64.deb
sudo dpkg -i libcudnn8-samples_8.0.4.30-1+cuda11.0_amd64.deb

4. 测试

拷贝例程到用户目录
cp -r /usr/src/cudnn_samples_v8/ $HOME

5. 转到minist例程

cd  $HOME/cudnn_samples_v8/mnistCUDNN

6. 编译例程

sudo make clean && make

7. 运行例程

./mnistCUDNN

8. 如果cudnn被恰当的安装,将输出打印消息:Test passed!

9. cudnn 检测版本号

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

四、结论

本文分别从NVIDIA的驱动安装、CUDA下载安装和Cudnn下载安装三块,详细的介绍了Ubuntu安装整个的过程。如果你觉得本文对你有帮助,请点个👍,谢谢。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值