MATLAB代码演示,TDOA定位的优化算法,提升Z轴的定位精度|复现《基于最小二乘法的室内三维定位算法研究》

在这里插入图片描述

本文复现文章:

  • 王桂杰,焦良葆,曹雪虹.基于最小二乘法的室内三维定位算法研究[J].计算机技术与发展,2020,30(04):69-73.

按照文章的核心算法,复现了TDOA下的最小二乘在三维环境中的改进定位方法,方法可以明显提升Z轴的定位精度

概述

代码实现了一种改进的加权最小二乘法(LS)用于三维TDOA定位,主要解决传统LS方法在高度方向估计精度不足的问题。通过4个基站的到达时间差(TDOA)测量值,实现三维空间中待定位节点的坐标解算。代码包含以下关键模块:

  1. 场景配置:定义基站拓扑与测试点分布
  2. 信号建模:生成含噪声的TDOA测量值
  3. 定位解算
    • 传统LS方法:直接求解三维坐标
    • 改进LS方法:分层解算(二维平面+高度优化)
  4. 性能评估:计算定位误差并进行三维可视化

TDOA观测模型:
设基站坐标为 b i = [ x i , y i , z i ] T \boldsymbol{b}_i = [x_i,y_i,z_i]^T bi=[xi,yi,zi]T, 待定位点为 p = [ x , y , z ] T \boldsymbol{p}=[x,y,z]^T p=[x,y,z]T,则距离差测量值为:
Δ r i j = ∥ p − b i ∥ − ∥ p − b j ∥ + ε i j \Delta r_{ij} = \|\boldsymbol{p}-\boldsymbol{b}_i\| - \|\boldsymbol{p}-\boldsymbol{b}_j\| + \varepsilon_{ij} Δrij=pbipbj+εij
其中 ε i j \varepsilon_{ij} εij为测量噪声,服从 N ( 0 , σ 2 ) \mathcal{N}(0,\sigma^2) N(0,σ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB卡尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值