【EKF组合导航例程】MATLAB代码,15维状态量、3维观测量的组合导航,滤波使用EKF(扩展卡尔曼滤波)。附下载链接

#AI提效·半月创作挑战赛#

在这里插入图片描述

三维状态量的EKF例程(严格的组合导航推导)。基于15维误差状态模型:位置(3)、速度(3)、姿态(3)、陀螺偏差(3)、加速度计偏差(3)。观测量为三维位置(另有三维位置+速度为观测的程序)

程序简介

三维EKF组合导航系统代码结构说明

程序概述

本MATLAB程序实现了一个基于扩展卡尔曼滤波器(EKF)的三维组合导航系统,融合IMU(惯性测量单元)和GNSS(全球导航卫星系统)数据,实现高精度的位置、速度、姿态估计。

代码结构详解

  1. 初始化部分(第1-20行)
% 基础设置
clear; clc; close all;
rng(0); % 固定随机种子确保结果可重现
  • 清理工作空间并固定随机数种子
  • 为程序提供可重现的仿真环境
  1. 系统参数配置(第21-35行)
  • 时间参数:采样间隔dt=0.1s,总仿真时间100s
  • 噪声参数:定义IMU和GNSS的噪声特性
    • 陀螺仪噪声、加速度计噪声
    • 传感器偏差参数
    • GNSS位置观测噪声
  1. 协方差矩阵设置(第36-50行)
  • 过程噪声矩阵Q:15×15矩阵,描述系统动态噪声
  • 观测噪声矩阵R:3×3矩阵,描述GNSS位置观测噪声
  • 矩阵按状态顺序分块:位置、速度、姿态、陀螺偏差、加速度计偏差
  1. 状态向量和数据存储初始化(第51-70行)
  • X_true:真实轨迹状态(15×N)
  • X_imu:纯IMU积分结果(15×N)
  • X_ekf:EKF滤波估计结果(15×N)
  • Z:GNSS观测数据(3×N)
  • P:初始协方差矩阵
  1. 轨迹生成和传感器数据模拟(第71-105行)
% 生成螺旋上升运动轨迹
for k = 1:N
    % 真实轨迹计算
    % IMU数据生成(比力和角速度)
    % GNSS观测生成(每1秒更新一次)
end
  • 生成螺旋上升运动的真实轨迹
  • 模拟IMU传感器输出(加速度和角速度)
  • 模拟GNSS观测数据(位置,1Hz更新率)
  1. 纯IMU积分对比算法(第106-125行)
% 纯IMU积分作为对比基准
for k = 2:N
    % 姿态更新
    % 速度更新
    % 位置更新
    % 偏差随机游走
end
  • 实现纯IMU积分算法作为对比基准
  • 展示未经滤波处理的IMU积分误差累积
  1. EKF主滤波循环(第126-160行)
for k = 2:N
    % 预测步骤
    X_pred = state_transition(X_ekf(:, k-1), imu_data(:, k-1), dt);
    F = compute_state_jacobian(X_ekf(:, k-1), imu_data(:, k-1), dt);
    P_pred = F * P * F' + Q;
    
    % 更新步骤(有GNSS观测时)
    if ~isnan(Z(1, k))
        % 卡尔曼增益计算
        % 状态和协方差更新
    end
end

预测步骤:

  • 调用状态转移函数进行状态预测
  • 计算雅可比矩阵F
  • 预测协方差矩阵

更新步骤:

  • 检查GNSS观测可用性
  • 计算卡尔曼增益
  • 更新状态估计和协方差
  1. 结果可视化(第161-280行)

包含5个主要图表:

  1. 三维轨迹对比图:展示真实轨迹、IMU积分、EKF估计和GNSS观测

  2. 位置分量时序图:X、Y、Z三个方向的位置对比

  3. 速度分量时序图:X、Y、Z三个方向的速度对比

  4. 位置和速度误差图:量化不同方法的精度

  5. 姿态角对比图:横滚、俯仰、偏航角的估计效果

  6. 性能统计输出(第281-290行)

  7. 核心辅助函数

程序流程总览

初始化 → 参数设置 → 轨迹生成 → 纯IMU积分 → EKF滤波 → 结果可视化 → 性能分析

运行结果

三维轨迹对比图像:
在这里插入图片描述
速度、位置、姿态对比图:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
误差对比图像:
在这里插入图片描述
命令行输出的结果:
在这里插入图片描述

完整代码下载链接:

https://download.csdn.net/download/callmeup/91962283

如需帮助,或有导航、定位滤波相关的代码定制需求,请点击下方卡片联系作者

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB卡尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值