红黑树的特性和实现

红黑树是一种自平衡的二叉搜索树,它在每次插入或删除操作后的重平衡过程中,仅涉及常数个节点,确保了高效的性能。相比AVL树,红黑树放宽了平衡条件,允许最大高度差为2,通过节点颜色来维护平衡。文章详细介绍了红黑树的定义、节点新增和删除时的双黑修正策略,包括四种不同的修正情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

平衡二叉搜索树的形式多样,且各具特色。比如,伸展树实现简便、无需修改节点 结构、分摊复杂度低,但可惜最坏情况下的单次操作需要n时间,故难以适用于对可靠性和稳定性要求极高的场合。
反之,AVL树尽管可以保证最坏情况下的单次操作速度,但需在节点中嵌入平衡因子等标识;更重要的是,删除操作之后的重平衡可能需做多达logn次旋转,从而频繁地导致全树整体拓扑结构的大幅度变化。

红黑树即是针对后一不足的改进。通过为节点指定颜色,并巧妙地动态调整,红黑树可保证: 在每次插入或删除操作之后的重平衡过程中,全树拓扑结构的更新仅涉及常数个节点。尽管最坏情况下需对多达logn个节点重染色,但就分摊意义而言仅为O(1)个

当然,为此首先需在AVL树“适度平衡”标准的基础上,进一步放宽条件。实际上,红黑树所采用的“适度平衡”标准,可大致表述为:任一节点左、右子树的高度,相差不得超过两倍。

定义与条件

为便于对红黑树的理解、实现与分析,这里不妨下图所示统一地引入n + 1个外部节点,以保证原树中每一节点(现称作内部节点,白色八角形)的左、右孩子均非空—尽管有可能其中之一甚至二者同时是外部节点。
这里写图片描述

这些外部节点的引入只是假想式的,在具体实现时并 不一定需要兑现为真实的节点。如此扩展之后的便利 之处在于,我们的考查范围只需覆盖真二叉树。

由红、黑两色节点组成的二叉搜索树若满足以下条件,即为红黑树(red-black tree):

  • (1) 树根始终为黑色
  • (2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值