锋哥原创的Matplotlib3 Python数据可视化视频教程:
2026版 Matplotlib3 Python 数据可视化 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili
Matplotlib3简介
Matplotlib 是 Python 最流行的数据可视化库之一,广泛应用于科学计算、数据分析、科研绘图、机器学习等领域。
官方主页:Matplotlib — Visualization with Python 最新版本:3.10
Matplotlib 是 Python 编程语言的 2D 绘图库,由 John Hunter 于 2003 年创建,遵循 PSF 许可证开源协议 [2]。它支持生成出版级质量的静态、动态及交互式图表,覆盖折线图、散点图、柱状图等常见类型,并具备跨平台交互环境与多种硬拷贝格式输出能力。其核心功能通过简洁的代码调用实现,提供坐标轴定制、网格线调整、图例设置等基础绘图配置,且支持通过配置文件或动态修改参数。
我们学习的话,主要通过官方用户指南:Using Matplotlib — Matplotlib 3.10.5 documentation
以及官方demo:Examples — Matplotlib 3.10.5 documentation
安装Matplotlib3库
首先我们新建一个纯净Python项目,选虚拟环境。Python版本3.11。
新建完项目,在终端Terminal里执行 matplotlib 安装命令,使用清华镜像安装,速度块。
pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple
我们在安装一个jupyter,主要方便学习的时候,可视化图表显示。
pip install jupyter -i https://pypi.tuna.tsinghua.edu.cn/simple
这样我们把matplotlib库安装好了。
编写Matplotlib3 HelloWord项目
我们主要通过matplotlib的pyplot绘图工具来实现绘图。
我们先生成x,y轴随机数,然后调用plot方法,最后保存为图片。
import numpy as np
from matplotlib import pyplot as plt
# 随机生成数据
x = np.arange(2, 20, 1)
y = (x - 1) ** 3 + 1
# 绘图
plt.plot(x, y)
# 保存为图片
plt.savefig('test.png')
运行程序,则生成test.png图片,我们打开,一个最简单的二维图表生成了。
但是这里有个麻烦的地方,每次学习都要图片,再打开查看效果,比较麻烦。有没有直观的方式呢?
当然有,我们使用jupyter。
我们新建一个file文件,名字是helloWorld.ipynb
然后再贴下代码,最后的savefig()方法改成show()方法
import numpy as np
from matplotlib import pyplot as plt
# 随机生成数据
x = np.arange(2, 20, 1)
y = (x - 1) ** 3 + 1
# 绘图
plt.plot(x, y)
# 显示图片
plt.show()
运行下,直接显示报表图形了。非常直观,非常Nice,很适合我们学习用。