非线性分类器

本文详细介绍了非线性分类器中的分段线性判别函数和二次判别函数。分段线性函数通过构建多个线性分类器组合成分段线性决策面,适应复杂分类问题。二次判别函数适用于两类样本分布成团且集中的情况,通过定义两类的二次函数来确定超二次曲面的决策边界。此外,还讨论了前馈神经网络在非线性分类中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

非线性分类器

分段线性判别函数

分段线性函数的基本思想

分段线性函数是一种特殊的非线性判别函数,它确定的决策面是由若干超平面段组成的
由于它的基本组成仍然是超平面,因此,与一般超曲面相比是简单的;又由于它是由多段超曲面组成的,所以它能逼近各种形状的超曲面,具有很强的适应性

把各类划分成适当的子类,在两类的多个子类之间构建线性判别函数,然后把它们分段合并成分段线性被别函数。

分段线性距离分类器

(1)当两类都是单峰分布
如服从正态分布且两类的方差相等时,基于最小距离的判别法为
g(x)=∥x−μ1∥2−∥x−μ2∥2{ >0<0⇒x∈{ ω1ω2g(x)=\parallel x - \mu_1 \parallel^2 - \parallel x-\mu_2 \parallel ^2 \begin{cases} > 0 \\ < 0 \end{cases} \Rightarrow x \in \begin{cases} \omega_1 \\ \omega_2 \end{cases} g(x)=xμ12xμ22{ >0<0x{ ω1ω2
决策面是两类均值连线的垂直平分面

最小距离分类器
单峰时有效

(2)当两类都是多峰分布时

如:
第一类的分布有两个峰
第二类的分布有三个峰
只取一个点不能反映类分部信息

解决办法:
对每一个峰去一个代表点
将每一类分成若干子集取每一子集的中心为代表点

数学语言表述:
如果对于ωi\omega_iωi类取lIl_IlI个代表点,或者说,把属于ωi\omega_iωi类的样本区域RiR_iRi分为lil_ili个子区域,即
Ri={ Ri1,Ri2,...,Rili}R_i=\left\{\begin{matrix}R_i^1,R_i^2,...,R_i^{li} \end{matrix}\right\}Ri={ Ri1Ri2,...,Rili}
μil\mu_i^lμil为各个子区域中样本的均值向量,并以此作为该子区域的代表点,这样可以在ωi\omega_iωi类上定义如下判别函数
gi(x)=min⁡l=1,2,...,li∥x−μil∥g_i(x)=\min_{l=1,2,...,l_i}\parallel x- \mu_i^l\parallelgi(x)=l=1,2,...,liminxμil
决策规则是:
若gj(x)=min⁡i=1,2,...,cgi(x)则把x归到ωj类若g_j(x)=\min_{i=1,2,...,c}g_i(x)则把x归到\omega_j类gj(x)=i=1,2,...,cmingi(x)xωj
此方法适用于各个子类在各维分布基本对称的情况

所以分段线性距离分类器,在类别的各个维度不对称的情况下分类结果是不准确的

将上述基于距离的分段线性判别函数概念加以推广,把每一类分为若干个子类,即令
ωi={ ωi1,ωi2,...,ωili}\omega_i=\left\{\begin{matrix}\omega_i^1,\omega_i^2,...,\omega_i^{li} \end{matrix}\right\}ωi={ ωi1ωi2,...,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值