非线性分类器
分段线性判别函数
分段线性函数的基本思想
分段线性函数是一种特殊的非线性判别函数,它确定的决策面是由若干超平面段组成的
由于它的基本组成仍然是超平面,因此,与一般超曲面相比是简单的;又由于它是由多段超曲面组成的,所以它能逼近各种形状的超曲面,具有很强的适应性
把各类划分成适当的子类,在两类的多个子类之间构建线性判别函数,然后把它们分段合并成分段线性被别函数。
分段线性距离分类器
(1)当两类都是单峰分布
如服从正态分布且两类的方差相等时,基于最小距离的判别法为
g(x)=∥x−μ1∥2−∥x−μ2∥2{
>0<0⇒x∈{
ω1ω2g(x)=\parallel x - \mu_1 \parallel^2 - \parallel x-\mu_2 \parallel ^2 \begin{cases} > 0 \\ < 0 \end{cases} \Rightarrow x \in \begin{cases} \omega_1 \\ \omega_2 \end{cases} g(x)=∥x−μ1∥2−∥x−μ2∥2{
>0<0⇒x∈{
ω1ω2
决策面是两类均值连线的垂直平分面
最小距离分类器
单峰时有效
(2)当两类都是多峰分布时
如:
第一类的分布有两个峰
第二类的分布有三个峰
只取一个点不能反映类分部信息
解决办法:
对每一个峰去一个代表点
将每一类分成若干子集取每一子集的中心为代表点
数学语言表述:
如果对于ωi\omega_iωi类取lIl_IlI个代表点,或者说,把属于ωi\omega_iωi类的样本区域RiR_iRi分为lil_ili个子区域,即
Ri={
Ri1,Ri2,...,Rili}R_i=\left\{\begin{matrix}R_i^1,R_i^2,...,R_i^{li} \end{matrix}\right\}Ri={
Ri1,Ri2,...,Rili}
μil\mu_i^lμil为各个子区域中样本的均值向量,并以此作为该子区域的代表点,这样可以在ωi\omega_iωi类上定义如下判别函数
gi(x)=minl=1,2,...,li∥x−μil∥g_i(x)=\min_{l=1,2,...,l_i}\parallel x- \mu_i^l\parallelgi(x)=l=1,2,...,limin∥x−μil∥
决策规则是:
若gj(x)=mini=1,2,...,cgi(x)则把x归到ωj类若g_j(x)=\min_{i=1,2,...,c}g_i(x)则把x归到\omega_j类若gj(x)=i=1,2,...,cmingi(x)则把x归到ωj类
此方法适用于各个子类在各维分布基本对称的情况
所以分段线性距离分类器,在类别的各个维度不对称的情况下分类结果是不准确的
将上述基于距离的分段线性判别函数概念加以推广,把每一类分为若干个子类,即令
ωi={
ωi1,ωi2,...,ωili}\omega_i=\left\{\begin{matrix}\omega_i^1,\omega_i^2,...,\omega_i^{li} \end{matrix}\right\}ωi={
ωi1,ωi2,...,