Linux之PyTorch安装

本文介绍了PyTorch的基本概念和安装过程,包括选择Linux操作系统,安装Anaconda3,检查Python版本,通过conda命令安装PyTorch,并验证安装是否成功。此外,还提到了如何创建虚拟环境来安装特定版本的PyTorch。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、PyTorch简介

  PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。2017年1月,由Facebook人工智能研究院(FAIR)基于Torch推出PyTorch。PyTorch的前身是Torch,其底层和Torch框架一样,但是使用Python重新写了很多内容,不仅更加灵活,支持动态图,而且提供了Python接口。它是由Torch7团队开发,是一个以Python优先的深度学习框架,不仅能够实现强大的GPU加速,同时还支持动态神经网络。PyTorch既可以看作加入了GPU支持的numpy,同时也可以看成一个拥有自动求导功能的强大的深度神经网络。除了Facebook外,它已经被Twitter、CMU和Salesforce等机构采用。

二、安装步骤

1、操作系统选择

  查看PyTorch官网,可以看到PyTorch支持Linux、Mac、window平台、支持conda、pip、源码等安装方式,也支持CPU、cuda、ROCm计算平台,我们点击环境选择可以发现目前只有linux系统是支持全语言、全安装方式、全计算平台的,所以我们选择linux操作系统作为系统环境。另外机器学习计算要求glibc版本要求较高,centos搭载的内核和glbic版本较低,Ubuntu搭载的内核版本都较新,所以机器学习主机建议使用Ubuntu操作系统。目前cuda更新支持的最低Ubuntu版本为18.04,所以建议使用Ubuntu18.04以上的操作系统。
在这里插入图片描述

wuhs@s169:~$ cat /etc/os-release
NAME=“Ubuntu”
VERSION=“18.04.6 LTS (Bionic Beaver)”

2、Anaconda3安装

  如上所示,PyTorch支持的安装方式有多种,博主拟采用conda安装方式,建议先安装Anaconda3,可以根据我们需要创建不同虚拟环境,虚拟环境下安装不同的机PyTorch版本,虚拟环境支持互不影响。Ubuntu环境下anaconda的安装见博文Ubuntu之Anaconda3安装

wuhs@s169:~$ wget https://mirrors.bfsu.edu.cn/anaconda/archive/Anaconda3-2022.10-Linux-x86_64.sh
wuhs@s169:~$ sh Anaconda3-2022.10-Linux-x86_64.sh
wuhs@s169:~$ source ~/.bashrc

3、查看Python版本

  不同的PyTorch版本要求的Python版本是不一样的,所以安装好anaconda3后我们检查当前的Python版本,默认初始化都是当前anaconda3发布时对应的Python最新版本,当然我们也可以使用conda创建所需的Python环境版本。我们在torchvision查看PyTorch、torchvision、Python版本匹配要求。
在这里插入图片描述

(base) wuhs@s169:~$ python -V
Python 3.9.13

4、安装PyTorch

  如下第二步,PyTorch官网我们可以在选择操作系统、安装方式、编程语言、计算平台后生成对应的安装命令。

(base) wuhs@s169:~$ conda install pytorch torchvision torchaudio cpuonly -c pytorch
Collecting package metadata (current_repodata.json): done
Solving environment: done

## Package Plan ##
在这里插入图片描述
Proceed ([y]/n)? y

5、版本验证

(base) wuhs@s169:~$ python
Python 3.9.13 (main, Aug 25 2022, 23:26:10)
[GCC 11.2.0] :: Anaconda, Inc. on linux
Type “help”, “copyright”, “credits” or “license” for more information.
>>> import torch
>>> torch.version
‘1.13.1’
>>>

三、指定版本安装

1、创建虚拟环境

(base) wuhs@s169:~$ conda create -n pytorch python=3.9

(base) wuhs@s169:~$ conda activate pytorch
(pytorch) wuhs@s169:~$

2、安装指定版本的PyTorch

  安装指定版本的PyTorch的时候我们需要在GitHub官网PyTorch频道查看匹配版本,conda安装的时候指定版本号,具体版本号可以查看anaconda官网,PyTorch版本和TorchAudio对应关系见
TorchAudio。当然如果我们指定版本错误的情况下,安装的时候会报错,我们根据报错提示核验是哪个软件版本指定错误,再去官网合适确认修正后重新安装即可。
在这里插入图片描述
在这里插入图片描述

(pytorch) wuhs@s169:~$ conda install pytorch1.12.0 torchvision=0.13.0 torchaudio0.12.0 cpuonly -c pytorch

### 安装PyTorchLinux系统 #### 使用pip安装PyTorch(默认支持GPU) 对于希望快速完成安装的用户而言,在Linux环境下通过pip工具安装PyTorch是一个简便的选择。这不仅限于CPU版本,也涵盖了对CUDA的支持以便利用NVIDIA GPU加速计算过程。具体操作可以通过执行如下命令实现: ```bash pip install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple ``` 此方法采用清华大学开源软件镜像站作为索引源,有助于提高下载速度并稳定获取包资源[^1]。 #### 特定版本PyTorch安装 当项目依赖特定版本PyTorch时,则需指定确切的版本号来进行安装。例如要安装某个具体的版本可参照下面的形式调整命令中的`<version>`部分为所需的具体版本号: ```bash pip install torch==<version> torchvision==<version> torchaudio==<version> ``` 这里同样推荐使用清华镜像站点以优化下载体验。 #### Anaconda环境下的安装方式 考虑到许多开发者偏好在Anaconda环境中管理Python及其库,因此另一种常见的做法是在该环境下安装PyTorch。这种方法的优势在于能够更方便地管理和隔离不同项目的依赖关系。按照UP主分享的经验,这种方式往往能简化配置流程并减少潜在冲突[^2]。 #### 针对特定系统的安装方案 除了上述通用途径外,还有针对特殊需求定制化安装的可能性。比如依据个人计算机所运行的操作系统以及已有的Python解释器版本挑选最合适的预编译二进制文件进行部署。这类个性化设置通常可以从官方文档或是社区贡献者维护的相关资料中找到指导说明[^3]。 #### 历史遗留安装脚本示例 早期版本PyTorch可能涉及更为复杂的安装步骤,特别是涉及到CUDA兼容性的处理。虽然这些旧版指令不再被广泛推荐用于最新发布的PyTorch版本,但对于某些特殊情况仍有参考价值。例如曾经存在这样的安装组合: ```bash pip3 install http://download.pytorch.org/whl/cu90/torch-0.3.0.post4-cp36-cp36m-linux_x86_64.whl pip3 install torchvision ``` 请注意这种形式主要适用于非常老的PyTorch版本,并且其适用范围已经大大缩小[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

恒悦sunsite

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值