Solution 1
对 0123. Best Time to Buy and Sell Stock III 的进一步通用化,在指定次交易的范围内获得最大收益,实际上我们可以把之前一个题的buy和sell从两个扩展到一个k长度的数组
- 初始化条件:取最大,因此设置为INT_MIN,但是sell[0]应该为0
- 更新顺序:两重循环,第一重正常顺序扫描价格,第二重逐个更新这些buy和sell状态
- 顺序更新的覆盖问题:在前一个问题中已经证明,实际操作并不影响最终结果
- 最后结果的选择:最大利益的一次交易的结果会通过若干次同日交易和传递到最后一次交易结果(比如上一个题的sell2),因此我们可以直接找sell[K]就好了
然后整体看一下,本体实际上就是对过去三个题的统合。K=1时整个过程退化到寻找最理想的一次交易(最小的一次buy和其后最大的一次sel);K=2时整个过程退化到上一个题;K > n/2时整个过程退化到任意次交易。
- 时间复杂度: O ( n , k ) O(n,k) O(n,k),其中 n n n位输入长度, k k k为指定的最大交易次数,而从循环(根据上面的分析也可以对应到其他问题的时间复杂度)
- 空间复杂度: O ( k ) O(k) O(k),其中 k k k为指定的最大交易次数,保存所有交易次数下的最大利益方案
class Solution {
public:
int maxProfit(int k, vector<int>& prices) {
if (prices.empty() || k == 0) {
return 0;
}
vector<int> buy(k + 1, INT_MIN);
vector<int> sell(k + 1, INT_MIN);
sell[0] = 0; // 初始化状态,sell[0]在任何情况下都应该为0
for (int i = 0; i < prices.size(); ++i) {
for (int j = 1; j <= k; ++j) {
buy[j] = max(buy[j], sell[j - 1] - prices[i]);
sell[j] = max(sell[j], buy[j] + prices[i]);
}
}
return sell[k];
}
};
Solution 2
Solution 1的Python实现
class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
if len(prices) == 0 or k == 0:
return 0
buy = [float("-inf")] * (k + 1)
sell = [float("-inf")] * (k + 1)
sell[0] = 0
for price in prices:
for j in range(1, k + 1):
buy[j] = max(buy[j], sell[j - 1] - price)
sell[j] = max(sell[j], buy[j] + price)
return sell[k]