[TMI2019-10]Image Synthesis in Multi-Contrast MRI With Conditional Generative Adversarial Networks

本文介绍了一种基于条件生成对抗网络(GAN)的多对比度MRI图像合成新方法,旨在解决因扫描时间限制或图像质量问题导致的对比度不足问题。通过对抗性损失保留细节,结合逐像素和感知损失,以及循环一致性损失,提高了合成图像的质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Image Synthesis in Multi-Contrast MRI With Conditional Generative Adversarial Networks

获取具有多个不同对比度的相同解剖结构的图像会增加MR检查中可用的诊断信息的多样性。但是,扫描时间限制可能会阻止某些对比度的获取,并且某些对比度可能会被噪声和伪影破坏。在这种情况下,合成未获得或损坏的对比图可以提高诊断效用。对于多对比度合成,当前方法通过非线性回归或确定性神经网络学习源图像和目标图像之间的非线性强度转换。这些方法继而可能遭受合成图像中结构细节的损失。在本文中,我们提出了一种基于条件生成对抗网络的多对比度MRI合成新方法。所提出的方法通过对抗性损失来保留中高频细节,并且通过针对已配准的多对比度图像的逐像素和感知损失以及针对未配准的图像的循环一致性损失来提供增强的合成性能。来自相邻横截面的信息被用来进一步提高合成质量。

综述

量身定制的MRI脉冲序列可在对同一解剖结构成像时产生明显的对比。例如,T1加权的大脑图像清楚地描绘了灰色和白色物质组织,而T2加权的图像描绘了皮质组织中的流体。反过来,在同一对象中获取的多对比度图像会增加临床和研究中可获得的诊断信息。但是,考虑到与长时间检查和患者不合作的费用有关的考虑因素,尤其是在儿科和老年人身上,可能无法收集全部对比数据。在这种情况下,可能最好选择扫描时间相对较短的对比度。即使这样,所获取的对比度的子集也可能被过多的噪声或伪影所破坏,从而阻止了随后的诊断使用。而且,序列研究通常显示出显着的异质性,即成像方案以及他们获得的特定对比。因此,从其他成功获取的对比度中合成缺失或损坏的对比度的能力具有潜在的价值,可通过增加诊断相关图像的可用性以及改进诸如配准和分割之类的分析任务来增强多对比度MRI。

医学图像的跨域合成近来已在医学成像中获得普及。 给定对象在X(源域)中的图像x,目的是准确估计Y(目标域)中同一对象y的图像。 两种主要的综合方法是基于配准的方法和基于强度变换的方法。在这里,我们提出了一种基于生成对抗网络(GAN)架构的多对比度MRI图像合成的新方法。最近已经证明了对抗损失功能可用于各种医学成像应用,并且可以可靠地捕获高频纹理信息。

方法

生成对抗网络是由两个子网组成的神经网络架构。 G,一个生成器,D,一个鉴别器。 G 学习了从潜在变量 z(通常是随机噪声)到目标域中图像y的映射,D 学习了将生成的图像 G(z)与真实图像y区别开。 在训练 GAN 的过程中,同时学习 G 和 D,其中 G 旨在生成与真实图像无法区分的图像,而 D 则旨在区分生成的图像和真实图像。为此,可以使用以下对抗损失函数(LGAN):LGAN(G, D) = Ey[log D(y)]+Ez[log(1−D(G(z)))]。为了进一步稳定训练过程,可以用平方损失代替对抗损失的对数似然损失:LGAN(D,G) =−Ey[(D(y)−1)2]− Ez[D(G(z))2]

计算机视觉的最新研究表明,GAN 在图像到图像的转换任务中非常有效。 图像到图像的转换涉及相同基础视觉场景的不同表示之间的转换。 这些转换可用于在各个域之间转换图像,例如,从图像生成语义分割图,从草图生成彩色图像或从航拍照片生成地图。 传统的 GAN 学习从噪声中生成图像样本。 但是,在图像到图像的转换中,合成图像对源图像具有统计依赖性。为了更好地捕获这种依赖性,可以采用条件 GAN 来接收源图像作为附加输入。然后可以基于以下对抗损失函数来训练所得的网络:LcondGAN(D,G) =−Ex,y[(D(x, y)−1)2] −Ex,z[D(x,G(x,z))2], 其中 x 为源图像

对于空间上配准多对比度图像(pGAN)和未配准多对比度图像(cGAN)时,提供了两种实现方式。对于第一种情况,我们用合成和真实图像之间的像素损失和感知损失训练 pGAN(图1)。对于第二种情况,我们在用循环损失代替逐像素损失后训练 cGAN,该循环损失增强了从合成目标图像中重建源图像的能力(图2)。
pGAN
pGAN 方法基于带有生成器 G、预训练的 VGG16 网络 V 和鉴别器 D 的条件对抗网络。给定源对比中的输入图像(例如 T1 加权),G 学习生成与目标对比相同解剖结构的图像( 例如 T2 加权)。 同时,D 学会区分合成的(例如,T1-G(T1)和真实的(例如,T1-T2)对多对比度图像。两个子网都同时训练,其中 G 的目的是最小化逐像素损失和感知损失函数,D 试图最大化对抗损失函数。

cGAN
cGAN 方法基于具有两个生成器(GT1,GT2)和两个鉴别器(DT1,DT2)的条件对抗网络。 给定 T1 加权图像后,GT2 会学习生成同一解剖结构的相应 T2 加权图像,这是与其他解剖结构的真实 T2 加权图像无法区分的,而DT2则学会区分合成图像和真实 T2 加权图像。 GT1 学会生成解剖图的真实的 T1 加权图像,从而获得 T2 加权图像,而 DT1 学会区分合成的T1 图像和真实的 T1 加权图像。 由于鉴别器不比较相同解剖结构的目标图像,因此不能使用逐像素损失。 相反,利用循环一致性损失来确保训练有素的生成器能够从生成的目标图像中可靠地恢复源图像。

总结

本文主要用 GAN 进行 MRI 的 T1 和 T2 序列的相互转化生成。

<think>好的,我需要回答用户关于CS-SwinGAN在多线圈MRI重建中的应用的问题,并生成相关问题。首先,我要确认用户的需求:他们想了解CS-SwinGAN在多线圈MRI重建中的具体实现或相关研究论文。 首先,我应该回忆一下CS-SwinGAN是什么。CS-SwinGAN结合了压缩感知(CS)、Swin Transformer和生成对抗网络(GAN),用于医学影像重建,尤其是MRI。多线圈MRI重建涉及到从多个接收线圈的数据中重建图像,这通常需要处理并行成像和欠采样数据的问题。 接下来,我需要查找是否有相关的研究论文。根据已有的引用,用户提到了Data Driven Methods for MRI Reconstruction,其中提到深度学习方法用于图像重建,特别是结合压缩感知的方法。这可能包括CS-SwinGAN的应用。但需要具体文献支持。 然后,我应该考虑CS-SwinGAN在多线圈中的应用可能涉及哪些方面。例如,多线圈数据通常利用线圈灵敏度信息,而CS-SwinGAN可能需要整合这些信息到模型中。可能的实现步骤包括数据预处理(如灵敏度图估计)、网络架构调整以处理多通道数据,以及损失函数的设计来优化重建质量。 关于具体论文,我需要检查是否有公开的研究。假设目前还没有专门针对CS-SwinGAN和多线圈MRI的论文,但可能有类似的方法,如SwinIR或其它基于Transformer的模型在多线圈中的应用。这时候需要指出当前研究的趋势,并建议用户关注最新的会议论文,如MICCAI、IEEE TMI等。 此外,用户可能需要了解如何实现这样的模型。可能的实现步骤包括使用现有的多线圈数据集(如fastMRI),集成Swin Transformer块到GAN框架中,以及结合压缩感知的采样策略。代码实现可能基于PyTorch或TensorFlow,利用现有的库进行MRI重建任务。 最后,生成相关问题时要围绕模型扩展、性能对比、数据集使用和实际挑战等方面,帮助用户进一步探索该主题。</think>### CS-SwinGAN在多线圈MRI重建中的应用 CS-SwinGAN是一种结合**压缩感知(CS)**、**Swin Transformer**和**生成对抗网络(GAN)**的混合模型,专为医学影像重建设计。在多线圈MRI重建中,其核心是通过深度学习从欠采样数据中恢复高保真图像,同时利用多线圈数据的空间灵敏度信息提升重建质量[^1]。 #### 关键技术实现 1. **多线圈数据整合** 模型需处理来自多个接收线圈的k空间数据,通常通过以下步骤: - 使用灵敏度编码(如SENSE或GRAPPA)将多通道数据映射到图像空间 - 在生成器中嵌入Swin Transformer模块,增强长距离依赖建模能力 ```python # 伪代码示例:多通道数据输入处理 def forward(self, undersampled_kdata): coil_images = ifft2(undersampled_kdata) # 多线圈图像域数据 combined = self.sensitivity_map * coil_images # 灵敏度编码 return self.swin_transformer(combined) ``` 2. **压缩感知与GAN结合** - 生成器:基于Swin Transformer的U-Net结构,学习从欠采样数据到全采样数据的映射 - 判别器:区分重建图像与真实图像,驱动生成器优化高频细节 3. **损失函数设计** 通常包含: - 像素级L1/L2损失 - GAN对抗损失 - 频域一致性损失(如k空间数据保真度) #### 相关研究论文 目前公开文献中,**直接以CS-SwinGAN命名的多线圈MRI研究较少**,但以下方向密切相关: 1. **Swin Transformer在MRI中的应用** - *SwinMR* (MICCAI 2022):将Swin Transformer用于单线圈MRI重建,可扩展至多线圈场景 2. **多线圈GAN模型** - *CoilGAN* (IEEE TMI 2021):利用GAN处理多线圈数据,但未集成Transformer模块 #### 实现建议 若需自行实现,可参考以下步骤: 1. 使用**fastMRI数据集**(提供多线圈k空间数据) 2. 在现有SwinGAN代码基础上: - 增加**并行数据输入通道** - 集成**灵敏度图估计模块**(如ESPIRiT算法) 3. 优化策略: - 分阶段训练(先预训练Swin模块,再联合训练GAN) - 动态权重调整(平衡像素损失与对抗损失)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值