CF1873G题解

题目回顾:

给定一个由 A 和 B 组成的字符串s,有两种操作:

1:将一个子串 AB 转换为 BC 并获得一枚金币。

2:将一个字串 BA 转换为 CB 并获得一枚金币。

你可以进行若干次操作,问最多能获得多少枚金币。

我是用这种方式理解的: 我们假设B是某岛国,它会往大海中排核废水,如果它左右两边有A,它就会去其他地方排水,而它原来所在的地方就会变成一片废墟C。不能经过废墟。求它最多能在多少个地方排核废水。(希望这能帮助大家理解题意)

思路简析:

题目很简单(思路也很简单)列举所有的情况:

1:全是A或全是B肯定输出0。

2:x个不相邻的B(B不在开头和结尾)肯定将A分成x+1块。我们只需要记录每块A的长度取最小值。再用A的总数减去最小值即可。

3:如果开头或结尾有B,或者有两个以上B连在一起。那么就能取到所有的A,直接输出A的总和即可。

代码(知道你们最喜欢这个)

#include <bits/stdc++.h>
using namespace std;
int T;
string s;
int lna , lnb , numa , minn = 2147483647;
//lna计算每段A的长度,lnb计算每段b的长度。
//numa计算A的总数,minn计算最短的A
bool f1;//开头结尾有没有B 
bool f2;//有没有A 
bool f3; //有没有B 
bool f4; //判断中间有没有相邻的B 
int main()
{
    scanf("%d" , &T);
    while(T--)
    {
        cin >> s;
        f1 = 0;
        f2 = 0;
        f3 = 0;
        f4 = 0;
        lna = 0;
        lnb = 0;
        numa = 0;
        minn = 2147483647;//清空数据
        if(s[0] == 'B' || s[s.size() - 1] == 'B') f1 = 1;//开头或结尾有B(情况三)
        for(int i = 0 ; i < s.size() ; i++)
        {
            if(s[i] == 'A')
            {
                f2 = 1;//有A
                lna++;//A长度++
                numa++;//总数++
                lnb = 0;//B被打断
            }
            if(s[i] == 'B')
            {
                f3 = 1;//有B
                lnb++;//B长度++
                if(lnb >= 2) f4 = 1;//有连续的B
                minn = min(lna , minn);//更新最小值
                lna = 0;//A被打断
            }
        }
        if(lna != 0) minn = min(lna , minn);//别忘了算一下最后A的长度(我因为这里卡了一会)
        if(!f2 || !f3) printf("%d\n" , 0);//(情况1)
        else if(f1 || f4) printf("%d\n" , numa);//(情况2)
        else printf("%d\n" , numa - minn);//(情况3)
    }
    return 0;
}

CF Directional Increase是一道经典的算法题目,通常出现在编程竞赛中。题目要求在一个二维网格中,找到从起点到终点的路径,使得路径上的数值递增。以下是详细的题解: ### 题目描述 给定一个二维网格,每个格子中有一个整数。起点在左上角,终点在右下角。你可以从当前格子移动到右边的格子或下边的格子。找到一条路径,使得路径上的数值递增。 ### 解题思路 1. **动态规划**:使用动态规划来解决问题。定义一个二维数组`dp[i][j]`,表示从起点到格子`(i, j)`的递增路径的长度。 2. **初始化**:起点`dp[0][0]`的值为`grid[0][0]`。 3. **状态转移方程**: - 如果从上方移动到当前格子`(i, j)`,则`dp[i][j] = max(dp[i][j], dp[i-1][j] + 1)`,前提是`grid[i][j] > grid[i-1][j]`。 - 如果从左方移动到当前格子`(i, j)`,则`dp[i][j] = max(dp[i][j], dp[i][j-1] + 1)`,前提是`grid[i][j] > grid[i][j-1]`。 ### 代码实现 ```python def directional_increase(grid): if not grid or not grid[0]: return 0 m, n = len(grid), len(grid[0]) dp = [[1] * n for _ in range(m)] for i in range(m): for j in range(n): if i > 0 and grid[i][j] > grid[i-1][j]: dp[i][j] = max(dp[i][j], dp[i-1][j] + 1) if j > 0 and grid[i][j] > grid[i][j-1]: dp[i][j] = max(dp[i][j], dp[i][j-1] + 1) return dp[m-1][n-1] # 示例 grid = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ] print(directional_increase(grid)) # 输出: 5 ``` ### 解释 - 初始化`dp`数组为全1,因为每个格子的递增路径至少为1。 - 遍历每个格子,更新`dp[i][j]`的值。 - 最后,`dp[m-1][n-1]`即为从起点到终点的递增路径的最大长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值