关于动态规划算法

在暴力搜索基础上,增加了记忆机制而减少了时间复杂度,动态规划是一种以空间换时间的快速算法。

经典例题:

找零钱问题:用n种货币,组成aim的钱数,有多少种方法;

法一:

初始化一个二维数组dp[n][aim],行数为n,列数为aim。dp[i][j]含义为用penny[0...i]的货币组成j的钱数有多少种方法。

递归公式:

dp[i][j]=dp[i][i-penny[i]]+dp[i-1][j];

//该方法比较通俗易懂。

int countways(vector<int>penny,int n,int aim)
{
	//penny存储钱的种类;
	int dp[n][aim];
	for(int i=0;i<n+1;i++)
	{
		dp[i][0]=1;
	}
	for(int i=o;i<aim;i++)
	{
		if(i%penny[0]==0)
			dp[0][i]=1;
		else
			dp[0][i]=0;
	}
	for(int i =0;i<n;i++)
	{
		for(int j=0;j<aim;j++)
		{
			if(j>=penny[j])
				dp[i][j]=dp[i][j-penny[j]]+dp[i-1][j];
			else
				dp[i][j]=dp[i-1][j];
		}
	}
	return dp[n-1][aim];
}

法二: 有些晦涩

int countways(vector<int>penny,int n,int aim)
{
	int f[1000];
	memset(f,0,sizeof(f));//memset用于数组清零,从f开始的sizeof(f)长度设置为0;
	f[0]=1;
	for(int i=0;i<n;i++)
	{
		for(int j =penny[i];j<=aim;j++)
			f[j]+=f[j-penny[i]];
	}
	return f[aim];
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值