C++调用PyTorch模型:LibTorch

本文记录了利用C++调用PyTorch时LibTorch的学习过程。介绍了所需环境,包括PyTorch、cuda、opencv和VS版本。详细说明了具体步骤,如下载LibTorch、用pytorch生成模型文件、VS创建工程并配置环境,最后运行VS工程文件,强调输出一致的前提条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载的文章,挺不错,学习一下!

LibTorch学习笔记(一)

前天由于某些原因需要利用C++调用PyTorch,于是接触到了LibTorch,配了两天最终有了一定的效果,于是记录一下。

环境

PyTorch1.6.0
cuda10.2
opencv4.4.0
VS2017

具体过程

下载LibTorch

PyTorch官网下载LibTorch包,选择对应的版本,这里我选择Stable(1.6.0),Windows,LibTorch,C++/JAVA,10.2,然后我选择release版本下载,如下图
在这里插入图片描述
下载完后先不用管它,之后再用

用pytorch生成模型文件

我先创建了一个python文件,加载resnet50预训练模型,用来生成模型文件,代码如下

import torch
import torchvision.models as models
from PIL import Image
import numpy as np
from torchvision import transforms

model_resnet = models.resnet50(pretrained=True).cuda()

# model_resnet.load_state_dict(torch.load("resnet_Epoch_4_Top1_99.75845336914062.pkl"))
model_resnet.eval()
# 自己选择任意一张图片,并将它的路径写在open方法里,用来读取图像,我这里路径就是‘111.jpg’了
image = Image.open("111.jpg").convert('RGB')

tf = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        # transforms.Normalize(mean=[0.5]*3, std=[0.5]*3)
])

img = tf(image)
img = img.unsqueeze(dim=0)
print(img.shape)
input = torch.rand(1, 3, 224, 224).cuda()

traced_script_module_resnet = torch.jit.trace(model_resnet, input)

output = traced_script_module_resnet(img.cuda())
print(output.shape)
pred = torch.argmax(output, dim=1)
print(pred)
traced_script_module_resnet.save("model_resnet_jit_cuda.pt")

最后可以生成一个model_resnet_jit_cuda.pt文件,产生的输出如下所示
在这里插入图片描述
第一行是我们读取图像的shape,我们读取图片之后经过各种resize,增加维度,把图片数据的shape修改成模型接受的格式,可以看到预测的结果是921,之后我们将用到生成的model_resnet_jit_cuda.pt文件。

VS创建工程并进行环境配置

我在这个python文件路径下创建了这个vs工程Project1
在这里插入图片描述
创建完成之后我们打开Project1文件夹,里面内容如下
在这里插入图片描述
现在创建VS工程先告一段落,开始进行工程环境配置。把之前下载的LibTorch,解压到当前目录,解压后会出现一个libtorch的文件夹,文件夹目录里的内容为
在这里插入图片描述
这里将我框选的文件夹路径配置到工程属性当中,打开刚才新建的VS工程,选择项目为relaese的×64版本
在这里插入图片描述
然后点击项目->Project1属性,弹出属性页
在这里插入图片描述
在属性页同样注意是release的×64平台,点击VC++目录,在包含目录下加载我之前框出来的include文件夹路径,在库目录下加载框出来的lib文件夹路径,同时,我么也要用到opencv,所以也需要在包含目录下加载opencv的include文件夹与opencv2文件夹,在库目录下加载opencv\build\x64\vc14\lib,如下图
在这里插入图片描述
在这里插入图片描述
然后在属性页的链接器->输入,添加附加依赖项,首先先把opencv的依赖项添加了
opencv_world440.lib,(如果一直用的Debug模式,就添加opencv_world440d.lib),然后将libtorch/lib里所有后缀为.lib的问价全添加进来,打开这个文件夹
在这里插入图片描述
全都写进去,再点击确定,如下图所示
在这里插入图片描述
然后点击链接器->命令行,加上/INCLUDE:?warp_size@cuda@at@@YAHXZ 这一句,加上这一句是因为我们要用cuda版本的,如果是cpu版本可以不加。
在这里插入图片描述
最后点击C/C++ ->常规的SDL检查,设置为
点击C/C++ ->语言的符合模式,设置为
在这里插入图片描述
在这里插入图片描述
到此我们的配置就全部结束了!最后!复制libtorch/lib文件夹下所有文件,粘贴到工程文件夹Project1/×64/release文件夹里(点击此处的Project1文件夹可以发现里面也有一个×64/release,之前我也纠结是放在哪,然后我都试了一下,发现这个里面是可以不放的)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

运行VS2017工程文件

然后我运行VS工程下一个空的main文件,没有报错,配置大致是没问题的,最后添加完整代码,如下

#include <torch/script.h> // One-stop header.
#include <opencv2/opencv.hpp>
#include <iostream>
#include <memory>

//https://pytorch.org/tutorials/advanced/cpp_export.html

std::string image_path = "../../111.jpg";

int main(int argc, const char* argv[]) {

	// Deserialize the ScriptModule from a file using torch::jit::load().
	//std::shared_ptr<torch::jit::script::Module> module = torch::jit::load("../../model_resnet_jit.pt");
	using torch::jit::script::Module;
	Module module = torch::jit::load("../../model_resnet_jit_cuda.pt");
	module.to(at::kCUDA);

	//assert(module != nullptr);
	//std::cout << "ok\n";

	//输入图像
	auto image = cv::imread(image_path, cv::ImreadModes::IMREAD_COLOR);
	cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
	cv::Mat image_transfomed;
	cv::resize(image, image_transfomed, cv::Size(224, 224));

	// 转换为Tensor
	torch::Tensor tensor_image = torch::from_blob(image_transfomed.data,
		{ image_transfomed.rows, image_transfomed.cols,3 }, torch::kByte);
	tensor_image = tensor_image.permute({ 2,0,1 });
	tensor_image = tensor_image.toType(torch::kFloat);
	tensor_image = tensor_image.div(255);
	tensor_image = tensor_image.unsqueeze(0);
	tensor_image = tensor_image.to(at::kCUDA);

	// 网络前向计算
	at::Tensor output = module.forward({ tensor_image }).toTensor();
	//std::cout << "output:" << output << std::endl;

	auto prediction = output.argmax(1);
	std::cout << "prediction:" << prediction << std::endl;

	int maxk = 3;
	auto top3 = std::get<1>(output.topk(maxk, 1, true, true));

	std::cout << "top3: " << top3 << '\n';

	std::vector<int> res;
	for (auto i = 0; i < maxk; i++) {
		res.push_back(top3[0][i].item().toInt());
	}
	for (auto i : res) {
		std::cout << i << " ";
	}
	std::cout << "\n";

	system("pause");
}

得到最终输出为921,可以看到和之前的python文件下输出一致,这里还输出了它的top前三,分别是921,787,490。
在这里插入图片描述
注意到,我的这两个输出相同的前提条件是:
1、确定加载的是由对应python文件生成的模型!
2、输入的图片是同一张!并且在python下和C++下进行了同样的转换,这里我在python下,将它进行了RGB模型的转换,resize(224, 224),并且将它的每一个元素值除以255.0,转换到0~1之间(ToTensor()方法),最后维度转换为1, 3, 224, 224,在C++中同样需要将BGR模型转化为RGB模型,进行图像缩放至224,224,并且将像素值除以255,将类型转化为float类型,最后维度同样转换为1,3,224,224,再进行网络前向计算。

<think>好的,用户想在C++调用PyTorch模型。我需要分步骤解释,确保结构清晰。首先,我应该想到PyTorch提供了TorchScript来导出模型,这是关键步骤。然后,用户需要配置LibTorch库,这是C++版本的PyTorch。接下来是编写C++代码加载和运行模型。可能还需要注意模型导出的正确性,以及编译时的依赖项和路径设置。用户可能对某些步骤不熟悉,比如如何正确使用TorchScript转换模型,或者如何设置CMakeLists.txt。需要详细说明每个步骤,并提醒常见的陷阱,比如输入张量的格式要与Python端一致。另外,编译命令和必要的库链接也要明确给出,避免用户遇到链接错误。最后,测试示例是否有用,确保用户能验证整个流程是否成功。可能还要提到不同平台的环境配置差异,比如Windows和Linux下的路径问题。总之,要覆盖从模型导出、环境配置、代码编写到编译运行的整个流程,确保用户能逐步跟随操作。</think>在C++调用PyTorch模型可以通过以下步骤实现: --- ### 一、前置准备 1. **安装LibTorch** - 从PyTorch官网下载对应C++库:https://pytorch.org/get-started/locally/ - 选择与Python端PyTorch版本匹配的LibTorch版本 2. **导出PyTorch模型为TorchScript格式** ```python # Python端代码示例 import torch import torchvision # 创建/加载模型 model = torchvision.models.resnet18(pretrained=True) model.eval() # 转换为TorchScript example_input = torch.rand(1, 3, 224, 224) traced_script_module = torch.jit.trace(model, example_input) traced_script_module.save("model.pt") # 保存模型文件 ``` --- ### 二、C++项目配置 1. **CMakeLists.txt配置示例** ```cmake cmake_minimum_required(VERSION 3.0) project(torch_inference) set(CMAKE_PREFIX_PATH "/path/to/libtorch") # 修改为你的LibTorch路径 find_package(Torch REQUIRED) add_executable(main main.cpp) target_link_libraries(main "${TORCH_LIBRARIES}") set_property(TARGET main PROPERTY CXX_STANDARD 14) ``` --- ### 三、C++代码实现 ```cpp #include <torch/script.h> #include <iostream> int main() { // 1. 加载模型 torch::jit::script::Module module; try { module = torch::jit::load("model.pt"); } catch (const c10::Error& e) { std::cerr << "模型加载失败: " << e.what() << std::endl; return -1; } // 2. 准备输入张量 std::vector<torch::jit::IValue> inputs; inputs.push_back(torch::ones({1, 3, 224, 224})); # 输入尺寸需与模型匹配 // 3. 执行推理 at::Tensor output = module.forward(inputs).toTensor(); // 4. 处理输出 std::cout << "输出结果:\n" << output.slice(/*dim=*/1, /*start=*/0, /*end=*/5) << std::endl; return 0; } ``` --- ### 四、编译与运行 1. **编译命令** ```bash mkdir build cd build cmake .. make -j4 ``` 2. **运行程序** ```bash ./main ``` --- ### 五、注意事项 1. **输入输出一致性** - C++端的输入张量维度、数据类型必须与Python训练时一致 - 建议在Python端添加输入预处理代码 2. **GPU支持** 如需使用GPU: ```cpp module.to(torch::kCUDA); inputs.push_back(torch::ones({1,3,224,224}).to(torch::kCUDA)); ``` 3. **异常处理** - 建议使用try-catch块处理加载/推理异常 - 注意内存管理,避免内存泄漏 --- ### 六、验证测试 建议先用Python生成测试输入,在C++端验证输出是否一致,确保模型转换正确性。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值