单链表主类
有序链表合并思路
原链表m
和n
都是有序的,比如都是正序排列(从小到大)
两个链表同时从头开始向后移动
移动前先比较节点大小,更小的存入新链表的链尾(此为中间步骤)
直到有一个链表移动结束,再将另一个链表的剩余部分追加到新链表的链尾。
代码
public SinglyLinkedList<T> mergeSorted(SinglyLinkedList<T> sortedList) {
// 空链情况处理
if (this.getHeader() == null) {
return sortedList;
}
if (sortedList == null || sortedList.getHeader() == null) {
return this;
}
SinglyLinkedList<T> mergeResult = new SinglyLinkedList<T>();
SinglyLinkedNode<T> m = this.getHeader();
SinglyLinkedNode<T> n = sortedList.getHeader();
// 先处理头
int compare = m.compareTo(n);
if (compare < 0) {
// m比n小
mergeResult.setHeader(m);
m = m.getNext();
} else {
// n比m小,或n=m
mergeResult.setHeader(n);
n = n.getNext();
}
mergeResult.size++;
SinglyLinkedNode<T> current = mergeResult.getHeader();
while (m != null && n != null) {
compare = m.compareTo(n);
if (compare < 0) {
// m比n小
current.setNext(m);
m = m.getNext();
} else {
// n比m小,或n=m
current.setNext(n);
n = n.getNext();
}
current = current.getNext();
mergeResult.size++;
}
// m、n 有且只有一个为null
if (m == null) {
current.setNext(n);
while (n != null) {
n = n.getNext();
mergeResult.size++;
}
} else {
current.setNext(m);
while (m != null) {
m = m.getNext();
mergeResult.size++;
}
}
return mergeResult;
}
最初按这个思路写代码的时候,是将头的处理放在了while
循环体里,compare
比较的两个分支中需要单独判断current
是否为空,然后将新链表的头装上,看着有些恶心,就又改了
@Deprecated
public SinglyLinkedList<T> mergeSortedOld(SinglyLinkedList<T> sortedList) {
// 空链情况处理
if (this.getHeader() == null) {
return sortedList;
}
if (sortedList == null || sortedList.getHeader() == null) {
return this;
}
SinglyLinkedList<T> mergeResult = new SinglyLinkedList<T>();
SinglyLinkedNode<T> m = this.getHeader();
SinglyLinkedNode<T> n = sortedList.getHeader();
SinglyLinkedNode<T> current = null;
while (m != null && n != null) {
int compare = m.compareTo(n);
if (compare < 0) {
// m比n小
if (current == null) {
mergeResult.setHeader(m);
current = m;
} else {
current.setNext(m);
current = current.getNext();
}
m = m.getNext();
} else {
// n比m小,或n=m
if (current == null) {
mergeResult.setHeader(n);
current = n;
} else {
current.setNext(n);
current = current.getNext();
}
n = n.getNext();
}
mergeResult.size++;
}
// m、n 有且只有一个为null
if (m == null) {
current.setNext(n);
while (n != null) {
n = n.getNext();
mergeResult.size++;
}
} else {
current.setNext(m);
while (m != null) {
m = m.getNext();
mergeResult.size++;
}
}
return mergeResult;
}
时间复杂度分析
和两条链表的长度m
,n
有关
极端情况下
1 -> 2 -> 3 -> 4
1 -> 1 -> 2 -> 2 -> 3 -> 4
最大时间复杂度O(m+n)
理想情况下
1 -> 2
3 -> 4 -> 5 -> 6
最小时间复杂度O(min(m,n))
更早的一个思路
以有序单链表m
为基准,从头开始,依次与链表n
的节点做比较
如果m
的节点小,则把n
的节点放到m
节点之后(处理n
节点前,暂存n
的剩余部分),m
链表向后移动两位
如果m
的节点大,则把n
的节点放到m
节点之前(处理n
节点前,暂存n
的剩余部分),m
链表向后移动一位
相等情况可放在上述两条分支上的任意一条
写的过程中,出现了一个很麻烦的事情,就是在第二种情形下,需要获取m
的当前节点的上一个节点,才能把n
的节点顺利放到m
节点之前。而对于单链表而言,向后找时间复杂度O(1)
,但向前找时间复杂度O(n)
。
除非是双向链表,不然这个不是好的处理方式
更更早的一个思路
时间复杂度是O(m*n)
(存疑…)
写一个有序链表的插入逻辑,新插入的节点会在链表中的恰当位置
然后把另一个链表所有节点从头到尾执行一遍插入
这个时间复杂度会挺高的