前言
在企业信息化建设和数字化转型过程中,可能接触过很多数据建设相关的产品,如主数据管理、数据仓库、数据中台、数据资产管理、数据共享、数据挖掘、数据分析、数据质量、数据治理等。当具体拆分开,我们发现这些建设的产品有很多工作重合的场景。因此,当我们把这些工作排重组合后,也许可以形成数据化工作集。这里边又可分为两类工作:数据生产、数据治理(管理)。
数据生产
数据生产工作是把企业中所有的数据汇聚在一起,物理上存储在一个统一的数据仓库中,同时逻辑上归入一个完整的数据模型,然后在这个模型中进行各种各样的数据加工和计算,以产生新的结果数据。这些结果数据会通过各种渠道反作用于业务,解决业务问题,产生业务价值,如提升营收、降低运营成本、提升生产效率、控制风险等。这就是我们经常说的数据驱动或数据产生价值。
主要包含:数据产生、数据采集、数据清洗、数据存储、数据加工。
数据治理
数据治理是数据生产过程的保障体系,主要包含:数据标准、数据组织、数据质量、数据安全。
主数据管理归类于数据生产基础层的内容,与数据治理体系中核心部分的关系如下:
主数据管理与数据标准的关系
数据标准是数据治理或整体数据化建设的核心。
在主数据管理体系中,主数据模型、主数据管理规范、主数据共享技术规范都可以看作数据标准。我们希望将所有数据生产线路上的规范都统一纳入数据标准管理体系。
数据生产的过程中,涉及到的数据按层级分可分为:基础数据、运营生产数据、行为数据等,按生产过程可分为:数据采集、数据建模、数据加工、数据统计等,这些都需要数据标准的支撑。
数据标准工作包含:标准制定、标准执行、标准执行效果评估和考核、标准的维护与修改。
数据标准工作是分散的,涉及范围广泛,关系到各个专业的领域和部门,且必须由不同的专业人员参与制定和管理。另外,这些标准具有很强的共性及权威性,需要进行统一管理和维护,同时需要对执行过程进行监控和对执行效果进行评估,在出现问题或环境发生变化后要及时调整和维护,所以统一的数据标准管理、运营体系是必需的。
需要成立标准管理委员会。这个委员会的定位一定要高,具有比较高的权限和比较强的专业能力、决断能力。同时,这个委员会应更偏重于一个虚拟的组织或一个小规模的实体组织,因为这个团队所涉及的工作,需要依靠众多的团队、企业内的业务专家,以及企业外的专业服务团队来一起完成。
主数据管理与数据组织的关系
数据组织包含两类:一类是全职的数据工作组织,即企业的信息中心、信息管理部门等,它的职能应至少包含以下内容:
(1)进行企业数据化转型的战略设计及规划工作。
(2)进行企业数据化整体架构工作。
(3)搭建企业数据化建设平台。
(4)搭建数据治理架构,进行数据治理。
(5)与业务部门一起进行数据应用建设与应用创新。
(6)不断完善数据组织并进行组织建设,以符合企业数据化转型的需求。
另一类则是兼职的数据管理工作者
因为除了单独的数据组织部门,还有很多数据工作需要开展。比如,在进行主数据管理的过程中,数据模型的定义可以由专职的组织来完成,数据规范也可以由专职组织进行管理。但是,在数据产生的过程中需要各个部门和岗位的配合。比如,从以往情况来看,当数据质量出现问题时,需要对传统的数据产生和管理方式进行调整,所以需要其他部门的配合,如在进行项目主数据管理时,项目的命名就可能需要多个部门的共同参与,同时需要知会上下游的相关部门和岗位。
对于主数据管理工作,从主数据建模、主数据标准管理,到业务中的主数据管理与维护都离不开数据管理组织的支撑。
主数据管理与数据质量的关系
很多失败的数据应用,第一理由都归集为数据质量问题导致最后的交付结果数据不准确,以致用数部门最终无法采纳该数据。
主数据管理最核心的价值在于提升基础数据的整体数据质量,保证数据的及时性和准确性。
主数据管理与数据安全的关系
主数据是企业最基础最核心的数据,其数据价值不言而喻,所以如何保证主数据的使用安全是我们必须关注的内容。主数据应当完整纳入数据安全管理体系,从数据存储安排、防止窃取和泄露等诸多方面予以全方位的保障。