- 博客(8086)
- 收藏
- 关注
转载 解码人类理解与机器理解的本质:Geoffrey Hinton谈握手机制
Transformer 的注意力机制(attention)正是典型代表:每个词的 Query(查询)向量,与所有词的 Key(键)向量做点积“握手”,计算相似度权重,再用这些权重加权各词的 Value(值)向量,生成新的表征。正如当我们读到“苹果”时,脑海里不仅浮现果实的形状、味道,还有“红色”“果园”“维生素”等多重语义激活,它们共同构成对“苹果”的理解模型。理解一个词,首先是构建它的“内部模型”,词义源于我们如何在脑中、或在向量空间中,塑造它的表征。语言是一个符号,符号是用来表达某个概念。
2025-07-23 15:02:42
7
转载 Anthropic联合创始人万字实录:人类面临“AI时空扭曲”,Scaling Law正在提速
7月20日,Anthropic的联合创始人兼产品工程技术主管Benjamin Mann,接受了科技播客主持人Lenny Rachitsky的专访。Benjamin Mann曾在OpenAI参与GPT-3项目核心构建、现阶段专注于AI安全与对齐工作的技术专家。对话中Mann分享了他对AGI出现时间的预测,并阐述了他用以衡量其影响的“经济图灵测试”概念。他还讨论了Scaling Law的发展趋势,分析了当前技术进步面临的主要瓶颈。此外,Mann对其所关注的AI安全问题进行系统性阐述,包括Anthropic如何通
2025-07-23 15:02:42
19
转载 《Neuron》长期未解之谜——大脑如何实现外部与内部注意力的无缝切换?
研究采用多模态技术策略:通过精心设计的双线索范式结合高时间分辨率的脑磁图(MEG)记录,追踪注意力在感知与记忆域间切换时的神经动态;研究发现外部与内部注意共享背侧前顶叶网络(dorsal frontoparietal network)的控制基础,但内部注意额外招募内侧前额叶(medial PFC)和腹外侧前额叶(ventrolateral PFC)。
2025-07-23 15:02:42
37
转载 DeepMind夺得IMO官方「唯一」金牌,却成为OpenAI大型社死现场
刚刚,谷歌 DeepMind 宣布,其新一代 Gemini 进阶版模型在 IMO 竞赛中正式达到金牌得主水平,成功解决了六道超高难度试题中的五道,拿下 35 分(满分 42 分),成为首个获得奥赛组委会官方认定为金牌的AI系统。这背后提醒我们,在通往 AGI 的路上,除了技术力,如何与人类社会的规则与价值观对齐,正变得愈发重要。在过去的几个月里,我们在通用推理方面取得了很大进展。在分享我们的结果之前,我们与 IMO 的一位董事会成员进行了交谈,他要求我们等到颁奖典礼结束后再公开结果,我们的发布满足要求。
2025-07-22 16:04:30
75
转载 Gartner:生成式AI进入幻灭的低谷
这份报告,尤其是针对人工智能领域的版本,因其深刻的洞察力和前瞻性,已成为全球企业高管、技术领袖和投资者在制定战略时不可或缺的重要参考。然而,这恰恰是技术挤出泡沫、走向成熟的转折点。”和“AI智能体”成为新的热点,跃居“期望膨胀的顶峰”,这反映出市场已普遍认识到高质量数据是规模化AI的先决条件,而AI智能体则代表了下一波自动化的巨大潜力。例如,AI工程化(AI engineering),它使组织能够持续且安全地建立和发展高价值的AI解决方案组合,是企业大规模交付AI和GenAI解决方案的基础学科。
2025-07-22 16:04:30
295
转载 垂直和领域 Agent 的护城河:上下文工程
这和我们维护我们手机上内存很像,一开始所有应用和历史信息都保留,但当手机出现运行缓慢的时候,就会开始清理手机内存,例如把下载到本地的大文件删除,删除微信聊天中的不重要的历史信息。例如在文章开头,我们举的产品经理和工程师之间的那一段对话,一个高质量智能体,不再只是让大模型回答用户的问题,而是通过上下文工程,帮助大模型在回答前获得更加结构化的输入,包括项目状态、需求文档、任务历史、甚至团队氛围,实现大模型更好的理解当前的任务规划、团队过往的沟通隐患、对方的工作状态与担忧、文档/知识库的实时状态等等。
2025-07-22 16:04:30
26
转载 从第一性原理设计智能生态系统
来源:CreateAMindDesigning ecosystems of intelligence from first principles从第一性原理设计智能生态系统https://journals.sagepub.com/doi/pdf/10.1177/26339137231222481摘要本白皮书阐述了未来十年(及以后)人工智能领域的研究与发展方向。其最终构想是一个由自然与合成感知共同构成的网络物理生态系统,其中人类是重要的参与者——我们称之为“共享智能”(shared intelligence)
2025-07-21 18:04:39
79
转载 2万字长文,九篇论文读懂大模型的前世今生
大语言模型(LLMs)彻底改变了人工智能领域,但它的发展并非一蹴而就。一系列具有开创性的研究论文提出了核心观点,才让如今的人工智能成为可能——从Transformer的诞生,到能够遵循指令、逐步推理,甚至使用外部工具的模型。在这篇文章中,我们将探索九篇对现代大语言模型影响最为深远的论文。我们会深入剖析它们提出的关键概念、为何具有革命性意义,以及它们如何影响研究和现实世界中的人工智能应用。无论你是科技爱好者还是行业专业人士,这篇指南都能帮你梳理人工智能领域这些关键进展之间的脉络。2017年,Vaswani等人
2025-07-21 18:04:39
41
转载 深度访谈全文来了!黄仁勋:中国Ai市场无论有没有英伟达都会进步!中国创新步伐不可阻挡,供应链堪称世界奇迹!
英伟达一方面受益于一个极其精密、先进且技术含量极高的供应链,同时我们的供应链也是全球性的,我们在世界各地都有制造合作伙伴,而且为了构建我们的人工智能超级计算机,我们需要100到200家不同的技术合作伙伴为我们的产品提供支持。根据第三方调研机构IDC的统计,自2023年至2024年,中国数据中心加速卡市场中,国产算力占比从14%激增到34.6%,这个数据显示的是中国进口芯片受到限制后,市场发生的变化。所以将人工智能、软件和机械系统融合的能力,对中国来说是非常自然的能力,这对中国来说是个非凡的机遇。
2025-07-21 18:04:39
310
转载 广义智能体理论:智能时代通向「万物理论」的新路径?
甚至更进一步地猜测,我们熟知的引力、电磁力等,或许都源于一种更根本的「智能场」。极点智能场模型是广义智能体理论的智能体演化动力学机制,是将智能体的五种功能大小映射为一个五维能力向量空间,这个空间的两个极端,即为阿尔法智能体(绝对。世纪人工智能的爆发,为这一探索提供了可能的契机,智能体(Agent)逐步成为AI理论和产业的核心概念,并对科学和产业的创新产生越来越大的影响。在广义智能体理论中,智能体,作为宇宙的基本构成单元,提供了一种全新的框架,用以统一描述宇宙中不同智能特征系统的演化和相互关系。
2025-07-21 18:04:39
64
转载 《AI 2027》揭秘:人类会被超级智能取代吗?等等,还有另一个结局!
这之所以既激动人心又令人不安,不仅在于它是一份研究报告,更因为它以引人入胜的方式,描绘了AI快速发展的未来图景,让读者身临其境地感受这一进程。2027年1月,Open Brain开始训练Agent 2,与之前的智能体不同,Agent 2通过持续在线学习不断改进,永不停止训练。一旦AI能参与到自身研发,进步速度将不再恒定,而是不断加速。
2025-07-20 17:01:33
219
转载 AI自动发现未知化学反应动力学机制!上海交大提出生成式符号回归模型KinFormer
团队发布了首个化学合成大语言模型——白玉兰科学大模型,是首个具备反应生成与“人在环路”反馈优化能力、能够指导实验探索的化学大模型,具有分子设计、逆合成线路规划、反应条件生成、反应产率预测、实验条件优化迭代等化学。为化学家提供了强大的自动化工具,能够直接从实验数据中解析甚至发现未知的反应机理,极大加速了新催化剂设计与反应过程优化,减少对人工经验假设的依赖。
2025-07-20 17:01:33
359
转载 【阿姆斯特丹博士论文】语言模型与人类理解与行为的对齐
的提示工程,研究如何在该阶段实现语言模型行为与人类的对齐。虽然经过微调的语言模型【62, 168】在许多 NLU 基准任务(如自然语言推理,NLI【26, 312】)上取得了优异表现,研究表明这些模型往往依赖数据集中的偏差特征,而非人类真正关心的、与任务相关的语义特征【68, 190, 240】。已有研究表明,语言模型可能产生不完整的答案(知识覆盖不足)【25, 253, 321】,事实错误的答案(内容不符合事实)【197, 290, 291】,或逻辑混乱的答案(结构不连贯)【42, 132, 362】。
2025-07-20 17:01:33
57
转载 摩根大通首份非上市公司深度报告:OpenAI的“王座”与“枷锁”
显然,OpenAI的战略意图是,当模型本身不再是牢不可破的壁垒时,就通过无处不在的智能代理和软硬件结合的生态,将用户深度锁定在自己的体系内,从而建立起一道更可持续的商业护城河。而在内部战线,其与生俱来的“结构原罪”——那个为理想主义而设计的治理结构,正与商业现实发生激烈碰撞,不仅引发了与关键盟友的裂痕,更直接威胁到公司的融资命脉和战略执行。报告指出,由于高昂的“推理成本”和不断被侵蚀的“模型定价能力”,仅仅依靠订阅和API的商业模式已难以为继,寻求更高维度的变现途径已成为“商业上的当务之急”。
2025-07-20 17:01:33
36
转载 一夜之间OpenAI神秘模型“o3-alpha”刷爆时间线:远胜 Claude Sonnet
罗马大学:2025 超级高铁(Hyperloop):第五种新型交通方式 - 技术研发进展、优势及局限性研究报告(72 页)IMT:2025 具身智能(Embodied AI)概念、核心要素及未来进展:趋势与挑战研究报告(25 页)IEEE:2025 具身智能(Embodied AI)综述:从模拟器到研究任务的调查分析报告(15 页)奥雅纳:2024 塑造超级高铁(Hyperloop)的未来:监管如何推动发展与创新研究报告(28 页)
2025-07-19 15:28:21
50
转载 本世纪最伟大AI专访之一:AI安全、Agent、OpenAI等重磅话题
比如,我可能会把某个词放在下一个位置,当出现一个非常出人意料的词时,你会进行大量学习,而当出现一个很明显的词时,学习就很少。如果我所有的储蓄都是银行持有的银行股票,那么如果银行被攻击,而它们持有你的股票,这些股票仍然是你的。执行助理把一切都做好,首席执行官感觉很棒,他不明白自己其实并不在控制之中,但在某种意义上,他是在控制,他建议公司该做什么,她只是把事情做好,一切都很好。而人类是模拟的,你我的大脑不同,即使我知道你所有神经元的连接强度,对我也没用,因为我的神经元工作方式和连接方式略有不同。
2025-07-19 15:28:21
70
转载 诺奖得主最新预言:后AlphaFold时代,AI4Science将遍地开花!
他们设计了一个新的蛋白质(见图中的红色部分),替换掉原本的接合部分,从而改变了蛋白质的识别特性,使其能够靶向特定的细胞。这些评价意义重大,因为当你解决了真正的问题、创造了适用的工具,就能改变世界,改变那些在你成果基础上继续探索的不同领域研究者的生活。而我们对此完全不知情,也没有与这些研究人员合作,这完全是科学家们在我们的工具的基础上进行的新科学研究,而这是最令人兴奋的时刻。,而等变性只解释了其中的两三个百分点。它并不是依靠一个单一的想法,而是通过多个中等规模的创新叠加起来,形成了一个革命性的系统。
2025-07-19 15:28:21
162
转载 长上下文语言模型综述:让 AI 拥有 “长期记忆” 的关键技术解析
诸如分组查询注意力(Grouped-Query Attention, GQA)和多查询注意力(Multi-Query Attention, MQA)等技术减少了“键”和“值”投影的数量,节省了内存,尤其是在键值缓存(KV Cache)方面(稍后会详细介绍)。研究发现,即使在语义上不重要的情况下,最初的几个词元(“注意力汇聚点”)通常也会吸引过多的注意力。两者的界限变得模糊:检索增强生成(RAG)帮助长上下文语言模型(LCLMs)集中注意力,而长上下文语言模型(LCLMs)使检索增强生成(RAG)更强大。
2025-07-17 18:53:07
188
转载 万字追问:如何为一颗行星称量它的记忆?
在组装理论中,我们通过将对象视为“信息”来实现这一点:对象由宇宙用来构建它们的操作组成,这是一种内在属性,意味着不同的对象需要不同的记忆量,因此具有不同的时间深度。JWST拥有6.5米的主镜,主要工作在红外波段,能够观测早期宇宙、恒星和行星的形成以及系外行星的大气成分,是目前最强大的太空望远镜之一,为天文学研究带来了革命性的进展。因此,如果我们观测到一个足够复杂的大气,一个需要足够时间才能形成的大气,这可能就是生物特征的“确凿证据”,成为该行星存在某种生命的决定性标志。当然,约束是存在的。
2025-07-17 18:53:07
109
转载 塔勒布-从规模幻象到通用人工智能:LLM的局限与AGI的未来
这需要跨学科的协作,整合认知科学、神经科学和计算机科学的最新洞见。这些"意外"能力的出现引发了AI社区的极大热情,也催生了"通过持续扩大规模可能实现AGI"的乐观假设。LLM的快速发展无疑推动了AI领域的进步,但将这种进步等同于通向AGI的道路是一种危险的简化论。LLM虽然能生成跨领域文本,但这种"迁移"往往只是表面语言风格的模仿,而非深层次的原则应用。
2025-07-16 16:57:26
181
转载 智能跃迁:像大模型一样进化
来源:追问我们正经历一场前所未有的智能跃迁。人工智能带来的,远不止于技术革新,更是一场深刻重塑人类认知、教育与生存方式的范式转移。这场跃迁的关键,不在于技术会走多远,而在于——人类如何重新认识自我。当知识不再稀缺,学习的意义何在?当智能无处不在,智慧的栖身之所又在何处?当工具变成智能体,人的核心价值又该如何彰显?大模型的新前沿人类天才的养成,取决于两个重要因素的共同作用:一个是先天的优秀基因和充足的营养,这决定了一个人智力发展的下限;另一个是后天的精心培养和优质的教育资源,这可以充分释放和发展潜能,最终触达
2025-07-16 16:57:26
212
转载 提示工程死亡?不,它刚刚重生为计算科学:一篇讲透Prompt设计的科学基础
仅在层间传递(垂直方向),而非时间步传递(水平方向)。罗马大学:2025 超级高铁(Hyperloop):第五种新型交通方式 - 技术研发进展、优势及局限性研究报告(72 页)IMT:2025 具身智能(Embodied AI)概念、核心要素及未来进展:趋势与挑战研究报告(25 页)IEEE:2025 具身智能(Embodied AI)综述:从模拟器到研究任务的调查分析报告(15 页)奥雅纳:2024 塑造超级高铁(Hyperloop)的未来:监管如何推动发展与创新研究报告(28 页)
2025-07-15 17:38:51
133
转载 OpenAI 工程师最新演讲:代码只占程序员核心价值的 10%,未来属于“结构化沟通”
他提出,代码只是我们意图的一种“有损投影”,而真正有价值、能够跨越人与机器鸿沟的,是规约(Specification)。然而,当我们用 prompt 和大语言模型(LLM)互动时,我们却在做相反的事情:我们保留了生成的代码,却删掉了 prompt。然后,我们将原始规约、输入 prompt 和模型的回复,一起交给另一个“评分模型”(grader model),让它根据规约来给模型的回复打分。同理,代码本身,即便是写得很好的代码,通常也无法完全承载所有的意图和价值观。你看的是你的代码对世界产生的影响。
2025-07-15 17:38:51
185
转载 “大模型六小虎”被曝获20亿融资,放出首个推理模型技术秘籍!
现在MiniMax尝试进一步扩大这个规模,之前,通过在预训练数据集中搜索可用的RL数据来扩大规模,其已经将其扩展到50万量级,现在正尝试通过检索更大规模的预训练数据集,从中获取越来越多样的RL数据,并采用在Mid-training(中期训练)进行RL的范式,而不仅仅是作为后训练。首先需要定义模型的基础能力:对于给定上下文长度的模型,在一组特定问题上无限次尝试下的通过率(pass@k, k→∞)是多少,如果通过率为1,就表示这个模型能解决这类问题,通过率为0,则表示模型解决不了。
2025-07-15 17:38:51
316
转载 无Tokenizer时代真要来了?Mamba作者再发颠覆性论文,挑战Transformer
或许最具局限性的是字节对编码的不灵活性,相同的字符序列无论上下文如何,总是会得到相同的分词结果,这意味着该系统无法使其处理方式适应不同领域或语义。同样,根据下图我们可以看到 H-Net 是如何实现计算效率的:由许多标记组成的原始输入序列在中间层被压缩成一个小得多的表示形式(如主网络中较少的模块所示),然后再扩展回原始分辨率。对于具有挑战性的语言,这些优势更加明显。中文文本处理表现出尤为显著的改进,H-Net 在性能上超越传统的基于空格的分词法和字节对编码(BPE)方法的幅度,比在英语中看到的还要大。
2025-07-14 17:09:55
96
转载 强化学习也遇到了“天花板”?Andrej Karpathy构建了一个新算法
而RL则可以通过一个相对简单的奖励信号(比如任务成功或失败)来引导模型学习,这种方式更具扩展性,也更符合Rich Sutton提出的“苦涩的教训(The Bitter Lesson)”——即那些能充分利用计算资源进行大规模学习的通用方法,最终将胜过依赖人类知识的特定方法。当前的RL机制可以被概括为:“这件事做得好/差,我就为未来稍微增加/减少采取过的每个行动的概率”。然而,随着时间的推移和经验的积累,这些明确的指令可以通过一个类似“睡眠”的过程,被“蒸馏”并融入模型的权重中,最终成为一种无需思考的直觉。
2025-07-14 17:09:55
128
转载 大语言模型的秘密双重性:为何幻觉与泛化是同一枚硬币的两面
在泛化场景中,当训练集包含因果相关的知识(例如,“居住在”和“说”)时,微调后的模型可以正确推断出分布外问题“劳尔说法语”,这展示了泛化能力。这是一次卓越的泛化行为——模型通过推理得到了训练数据中从未显式陈述的新正确事实,这正是OCR的预期工作模式。它发现"住在巴黎"与"说法语"之间的联系并非一系列孤立事实,而是一条低秩"规则",从而学习到关联的。
2025-07-13 16:54:42
62
转载 谷歌推出「AI爱迪生」,科研不再靠灵感?
问题的难度,无法预料,尤其是在科学领域,一些看似简单的问题实际上可能非常难,反之亦然。在某些情况下,开发者可以使用现有的模拟器来进行评估,而在其他更复杂的情况下,可能需要开发定制化的评估工具。在面对复杂或模糊的任务时,大多数通用编码智能体,容易陷入困境或产生错误,因为它们通常依赖于直接的任务说明,而这些说明往往不够精确,或者它们没有很强的判断能力。通过基因池和评估函数,确保每一代的改进都能够提高整体的解的质量,同时保持了多样性,以便在庞大的搜索空间中发现最佳解决方案。
2025-07-13 16:54:42
110
转载 长文访谈 | AI 接管世界的四种最可能方式,以及8年内实现AGI的利弊分析
来源:AGI HuntRyan Greenblatt 谈 AI 接管世界的四种最可能方式,以及8年内实现AGI的利弊分析。来源链接:https://80000hours.org/podcast/episodes/ryan-greenblatt-ai-automation-sabotage-takeover/发布时间:2025年7月9日 星期三 10:48:47 GMTRyan Greenblatt 是《Alignment faking in LLMs》一书的主要作者,也是 AI 领域最高效的研究人员之一。目
2025-07-12 15:16:59
67
转载 人形机器人:3大核心传感器技术壁垒及市场规模分析(1.3万字)
来源:传感器专家网传感器为人形机器人感知层核心零部件,人形机器人对传感器需求较大,成本占比较高,本文将对六维力矩传感器、电子皮肤、MEMS传感器这几类传感器进行市场分析:1传感器:全球市场空间分析1.1. 传感器分类众多,压力传感器占比较大传感器是自动化检测技术和智能控制系统的重要部件。传感器是能够把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。广义上的传感器一般由信号检出器件与信号处理器件两部分组成,从而转化感知到的模拟信号并使之以电信号的形式显示。传感器一般由敏感元件、转换
2025-07-12 15:16:59
168
转载 智能之镜:NeuroAI 如何反映大脑与人工智能的未来
以及强调语义表达与泛化能力的方法[3],将实验任务与被试逐试次行为序列转换成自然语言描述,并用其微调大型语言模型,经微调的模型在未见任务与新被试上依然保持准确预测,自然语言本身也视为一种高度灵活、结构丰富的认知表征形式,可能成为理解复杂人类行为的通用建模接口。它不仅具备数据驱动的建模能力,还能通过压缩与抽象,揭示出潜在的行为生成机制。它们的作用类似于一种“模式检索与拷贝”机制:当模型在输入中识别出重复出现的结构时,归纳注意力头会学会对第一次出现的位置产生很强的注意力,并根据该位置的后缀部分预测后续结果。
2025-07-11 17:30:25
214
转载 Grok 4 发布,地表最强 AI,所有学术领域达到博士水平
此外,虽然它的输出速度(75 tokens/s)低于O3(188 tokens/s)和Gemini 2.5 Pro(142 tokens/s),但依旧优于Claude 4 Opus(66 tokens/s),性能稳居一线。这一分数直接击败了OpenAI的O3(70分)、Google的Gemini 2.5 Pro(70分)和Anthropic的Claude 4 Opus(64分)。IEEE:2025 具身智能(Embodied AI)综述:从模拟器到研究任务的调查分析报告(15 页)
2025-07-11 17:30:25
415
转载 麻省理工《2025量子技术报告》| IBM、Google、nVidia、Microsoft等科技巨头量子计划分析
量子指数报告2025》描绘了一个充满活力的量子技术生态,IBM、Google、Microsoft、Amazon和NVIDIA等科技巨头通过专利、投资和技术开发,引领量子技术从理论走向现实。,不仅展示了科技巨头如IBM、Google、Microsoft、Amazon和NVIDIA的引领作用,还突显了大学、初创企业和全球政府的贡献。
2025-07-11 17:30:25
304
转载 把生命类比成机器之为何会失效?
图源:Pixabay导读: “生命是一种与任何机器都不同的实体,有自己的逻辑,无法拿别的事物做类比。” 在过去几十年里,我们对生命运作模式的叙述模式已经发生了变化,而且现在是时候把这种变化说出来了。科普作者菲利普·鲍尔认为,科学家们有责任向公众阐述这种认知模式的变化。 于是,他撰写了《生命传》(How Life Works)一书,来解释我们对于生命的认识,帮助我们看到生命体的真正不同与特殊之处,思考”活”的真正意义。[英]菲利普·鲍尔 | 撰文王乔琦 | 翻译2000年6月26日,
2025-07-11 17:30:25
51
转载 智源大会报告:“通用”类脑计算系统研究
报告从类脑计算系统面临的软硬件生态系统碎片化问题入手,认为可以从通用计算机等的发展脉络与发展方法论里汲取经验来指导类脑系统研发,进而通过分析类脑计算应用的计算/数据访问特征,提出构建“通用”基础软件以及与通用处理器架构融合的类脑计算芯片,并介绍了团队在这方面的工作。随后,具体介绍了团队在类脑芯片架构与编译框架方面的工作。
2025-07-10 16:08:46
271
转载 「世界模型」也被泼冷水了?邢波等人揭开五大「硬伤」,提出新范式
如论文图 6(左半部分)所示,这种被批判的「编码器 - 编码器架构」在潜在空间中进行「确定性的下一嵌入预测」 ,但它在功能上仍是自回归的,需要递归地预测未来状态,因此并未真正避免其声称要解决的误差累积问题。如图 9(右半部分)所示。最后,作者认为,世界模型不是关于视频或虚拟现实的生成,而是关于模拟现实世界中所有可能性,因此,目前的范式和努力仍然是原始的。相比之下,自然语言是人类经验的高度压缩和抽象形式,它不仅能描述物理现实,还能编码如「正义」、「动机」等无法直接观察的抽象概念,并承载了人类的集体知识。
2025-07-10 16:08:46
60
转载 爆火的AI4Research,被哈工大车万翔团队讲明白了
为了解决这个问题,主要出版商引入了人工智能驱动的工具,例如自动关键字提取,主题匹配和初步评分,以提高效率,缩短周转时间,并减少人工筛选。生命科学和医学研究中的 AI 使用算法和计算模型来分析和预测跨尺度,从分子结构到临床诊断,加速药物发现,优化实验工作流程,提高诊断准确性,推进精准医疗。在化学和材料科学中, AI 驱动的化学和材料自动化将机器学习,机器人和仪器集成到一个闭环系统中,用于设计,合成和表征,加速决策和实验。在软件工程,应用 AI 技术自动化软件开发任务,可以提高代码质量和开发人员的生产力。
2025-07-10 16:08:46
111
转载 5个AI Agent“辩论”诊断,准确率超人类专家4倍 | 微软AI CEO详解微软医疗AI新突破
因此,在真实的临床应用环境中准确和可预防地检测这类疾病的能力,我认为将大大超过医生无法以你描述的方式进行锻炼的风险。而那是我们能做的极限。这就是为什么顺序诊断部分如此重要的原因,因为你可以实时观看 AI 向病历提问,得到一个答案,形成一个新问题,得到一个答案,提出一个新问题,然后要求一种不同类型的测试,得到那些结果,解释它,然后给出一个答案。对于这项技术的未来,他怀有极高的期望。因此,医生的角色不仅仅是提供人际连接和亲身陪伴,更是“以一种深度共情的方式与一个收到了诊断的患者一起思考,来规划他们的治疗过程。
2025-07-10 16:08:46
74
转载 【万字深度长文】深入浅出解析大模型的上下文工程
这是一款旅行助手大语言模型智能体,旨在记住你的偏好,实时获取信息,并在多轮任务中保持敏锐。在本文,我们不仅会探索什么是上下文,还会像系统工程师一样拆解它:如何构建、隔离、存储、检索、压缩上下文,并随着时间推移塑造它。本文中,我们了解到上下文工程不仅是将文本塞进令牌窗口,更关乎知识结构化、记忆管理,以及设计能像人类一样推理、适应和协作的系统。可以是结构化的(如图表或关系表)或非结构化的(如笔记、文件、嵌入)。我们常将LLM视为神奇的智能引擎,但没有合适的上下文,即使最智能的模型也只是在盲目猜测。
2025-07-09 16:51:01
66
转载 基于能量的Transformer横空出世!全面超越主流模型35%
通过全新能量机制,首次实现在跨模态以及数据、参数、计算量和模型深度等多个维度全面超越Transformer++(基于Llama 2的Transformer优化版本)的模型。在离散(文本)和连续(视觉)模态下,EBT在数据量、批次大小、参数量、计算量和模型深度等方面比Transformer++提升了约35%。
2025-07-09 16:51:01
98
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人