来源:专知
语言模型(LM)在自然语言处理领域取得了显著进展,但它们仍与人类的理解和行为存在偏差,从而限制了其在现实应用中的有效性。本论文从两个角度探讨了语言模型对齐的问题:其一是使模型的理解与人类对齐,其二是使模型的行为与人类对齐。具体而言,我们围绕四个关键主题展开研究:(i)通过去偏表示学习实现理解对齐;(ii)通过“强对弱”学习实现行为对齐;(iii)通过“弱对强”学习实现行为对齐;(iv)通过测试时行为反思实现行为对齐。
我们首先聚焦于微调过程中的表示对齐,提出了一个能够减少偏倚潜在特征并捕捉其动态影响的框架,从而提升模型在分布外数据上的泛化能力。接着,在“强对弱”学习的设定下,我们提出了一种行为对齐方法,用于提升知识密集型任务中的完整性、事实性和逻辑性,该方法融合了细粒度与粗粒度的知识信号。随后,我们研究了“弱对强”对齐的情境,即更强大的语言模型需从较弱的人类监督中学习。为此,我们引入了一种迭代式偏好优化策略,促进“弱教师”与“强学生”之间的互学机制。最后,我们在推理阶段关注模型行为的对齐,尝试缓解语言模型决策中的认知偏差。我们提出了一种包括三个连续步骤的方法——偏差识别、偏差分析与认知去偏——以迭代方式减少提示中的潜在认知偏差。
语言是人类的一项基本认知能力,使我们能够理解并交流多样且复杂的概念,这一能力使智人(Homo sapiens)有别于其他所有物种【59, 78, 104, 105, 218】。大约在五千年前,人类发明了书面语言【9, 131】,从而实现了信息在时间与空间上的保存与传播【93, 288】。在此基础上,自然语言处理(NLP)作为一个致力于使机器理解与生成自然语言的研究领域逐步发展起来【276】。早期的 NLP 系统主要依赖基于规则的方法,但自然语言本身的复杂性与歧义性带来了巨大挑战【110, 188】。近年来,语言模型(LM)取得了突破性进展,这主要得益于 Transformer 神经网络结构的提出【285】,以及模型规模、数据规模和训练时长的显著扩展【134】。
由此诞生的预训练语言模型(如 BERT【62】和 GPT-4【208】)构成了强大的通用语言理解与生成基础,可以方便地适配多种自然语言理解(NLU)【26, 272, 312】与自然语言生成(NLG)任务【28, 209, 221】。
强大语言模型的发展通常经历三个关键阶段:(i)预训练:语言模型通过自监督学习在大规模文本语料上进行训练,从中捕捉语言模式、结构与世界知识【124, 275】,这一阶段为语言模型提供了全面的语言与语境理解能力。(ii)微调:通过监督微调与偏好优化,在标注数据集上对预训练模型进行领域特定的适配【71, 209, 223】,以提升其在特定领域的性能,同时使其行为更符合人类偏好,并具备更强的指令跟随能力。(iii)提示工程:通过策略性设计任务特定的自然语言提示(prompts),实现对语言模型的调用,而无需修改模型参数【28, 305, 354】。尽管取得了诸多进展,近期研究发现语言模型在语言理解【23, 86, 101】和生成行为【29, 126, 273】方面仍存在对齐偏差,这些问题最终影响其有效性与可靠性。因此,本论文探索语言模型与人类理解及行为的对齐,如图 1.1 所示,重点关注微调与提示工程阶段。
我们首先探讨微调阶段语言模型与人类理解的对齐。虽然经过微调的语言模型【62, 168】在许多 NLU 基准任务(如自然语言推理,NLI【26, 312】)上取得了优异表现,研究表明这些模型往往依赖数据集中的偏差特征,而非人类真正关心的、与任务相关的语义特征【68, 190, 240】。例如,Gururangan 等人【101】发现,在 NLI 数据集中,语言模型倾向于利用负面词汇(如 nobody、no、never、nothing)与“矛盾”标签之间的虚假关联进行预测,导致模型在缺乏这种偏差的分布外数据上表现不佳。因此,我们旨在开发去偏表示学习方法,以减少表示中的偏差特征,并推动模型编码更多符合人类意图的、与任务相关的特征。
接下来我们研究语言模型在微调阶段与人类行为的对齐,尤其是在所谓的“强对弱”设定下。该设定的问题在于:经过微调的语言模型在处理复杂的知识密集型问答任务时,常常难以有效利用相关知识【16, 32, 42, 335】。已有研究表明,语言模型可能产生不完整的答案(知识覆盖不足)【25, 253, 321】,事实错误的答案(内容不符合事实)【197, 290, 291】,或逻辑混乱的答案(结构不连贯)【42, 132, 362】。这些问题源于模型在常规微调过程中缺乏对知识的深入理解。为了解决上述问题,我们提出了一种“强对弱”学习方法,以增强模型在微调过程中的细粒度与粗粒度知识感知能力。
随后,我们进一步探讨更具挑战性的“弱对强”设定下语言模型与人类行为的对齐问题。在这一设定中,目标是用由较弱人类智能体生成的弱标签,对更强大的语言模型进行微调。随着微调语言模型在某些任务上逐渐接近甚至超越人类水平【29, 31, 83】,使其行为符合人类价值观变得愈发紧迫。在语言模型能力超过人类的情境中,我们面临一个“弱对强”对齐问题:如何用噪声较大的弱监督信号,去有效对齐更强的模型。因此,我们探索“弱对强”学习方法,推动“弱教师”与“强学生”之间的互学机制,即通过迭代强化模型未熟悉的积极行为,并惩罚其熟悉的消极行为。
最后,我们将注意力转向测试阶段的提示工程,研究如何在该阶段实现语言模型行为与人类的对齐。语言模型在辅助决策方面展现出巨大潜力,尤其是在金融、医疗与法律等场景下作为个人助理的应用。虽然提示工程显著提升了语言模型在决策任务中的能力,但模型内部固有的认知偏差仍构成重大挑战。认知偏差是决策过程中系统性偏离理性或规范的行为模式,可能导致模型生成不准确的输出。当前先进的提示设计方法并未充分考虑语言模型中的认知偏差,因此这类偏差削弱了模型在决策任务中的可靠性。基于此,我们提出一种“测试时行为反思”(test-time behavior reflection)方法,依次执行三个步骤——偏差识别、偏差分析与认知去偏——以迭代方式缓解提示中的潜在认知偏差。
综上所述,本论文系统探讨了在不同场景下语言模型与人类理解与行为的对齐方法。研究结果强调了对齐方法在构建高效、可靠语言模型中的关键作用。
阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”
https://wx.zsxq.com/group/454854145828
未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https://wx.zsxq.com/group/454854145828 进入。

截止到3月31日 ”未来知识库”精选的百部前沿科技趋势报告
(加入未来知识库,全部资料免费阅读和下载)
牛津未来研究院 《将人工智能安全视为全球公共产品的影响、挑战与研究重点》
麦肯锡:超级智能机构:赋能人们释放人工智能的全部潜力
AAAI 2025 关于人工智能研究未来研究报告
斯坦福:2025 斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191 页)
壳牌:2025 能源安全远景报告:能源与人工智能(57 页)
盖洛普 & 牛津幸福研究中心:2025 年世界幸福报告(260 页)
Schwab :2025 未来共生:以集体社会创新破解重大社会挑战研究报告(36 页)
IMD:2024 年全球数字竞争力排名报告:跨越数字鸿沟人才培养与数字法治是关键(214 页)
DS 系列专题:DeepSeek 技术溯源及前沿探索,50 页 ppt
联合国人居署:2024 全球城市负责任人工智能评估报告:利用 AI 构建以人为本的智慧城市(86 页)
TechUK:2025 全球复杂多变背景下的英国科技产业:战略韧性与增长路径研究报告(52 页)
NAVEX Global:2024 年十大风险与合规趋势报告(42 页)
《具身物理交互在机器人 - 机器人及机器人 - 人协作中的应用》122 页
2025 - 2035 年人形机器人发展趋势报告 53 页
Evaluate Pharma:2024 年全球生物制药行业展望报告:增长驱动力分析(29 页)
【AAAI2025 教程】基础模型与具身智能体的交汇,350 页 ppt
Tracxn:2025 全球飞行汽车行业市场研究报告(45 页)
谷歌:2024 人工智能短跑选手(AI Sprinters):捕捉新兴市场 AI 经济机遇报告(39 页)
【斯坦福博士论文】构建类人化具身智能体:从人类行为中学习
《基于传感器的机器学习车辆分类》最新 170 页
美国安全与新兴技术中心:2025 CSET 对美国人工智能行动计划的建议(18 页)
罗兰贝格:2024 人形机器人的崛起:从科幻到现实:如何参与潜在变革研究报告(11 页)
兰德公司:2025 从研究到现实:NHS 的研究和创新是实现十年计划的关键报告(209 页)
康桥汇世(Cambridge Associates):2025 年全球经济展望报告(44 页)
国际能源署:2025 迈向核能新时代
麦肯锡:人工智能现状,组织如何重塑自身以获取价值
威立(Wiley):2025 全球科研人员人工智能研究报告(38 页)
牛津经济研究院:2025 TikTok 对美国就业的量化影响研究报告:470 万岗位(14 页)
国际能源署(IEA):能效 2024 研究报告(127 页)
Workday :2025 发挥人类潜能:人工智能(AI)技能革命研究报告(20 页)
CertiK:Hack3D:2024 年 Web3.0 安全报告(28 页)
世界经济论坛:工业制造中的前沿技术:人工智能代理的崛起》报告
迈向推理时代:大型语言模型的长链推理研究综述
波士顿咨询:2025 亚太地区生成式 AI 的崛起研究报告:从技术追赶者到全球领导者的跨越(15 页)
安联(Allianz):2025 新势力崛起:全球芯片战争与半导体产业格局重构研究报告(33 页)
IMT:2025 具身智能(Embodied AI)概念、核心要素及未来进展:趋势与挑战研究报告(25 页)
IEEE:2025 具身智能(Embodied AI)综述:从模拟器到研究任务的调查分析报告(15 页)
CCAV:2025 当 AI 接管方向盘:自动驾驶场景下的人机交互认知重构、变革及对策研究报告(124 页)
《强化学习自我博弈方法在兵棋推演分析与开发中的应用》最新 132 页
《面向科学发现的智能体人工智能:进展、挑战与未来方向综述》
全国机器人标准化技术委员会:人形机器人标准化白皮书(2024 版)(96 页)
美国国家科学委员会(NSB):2024 年研究与发展 - 美国趋势及国际比较(51 页)
艾昆纬(IQVIA):2025 骨科手术机器人技术的崛起白皮书:创新及未来方向(17 页)
NPL&Beauhurst:2025 英国量子产业洞察报告:私人和公共投资的作用(25 页)
IEA PVPS:2024 光伏系统经济与技术关键绩效指标(KPI)使用最佳实践指南(65 页)
AGI 智能时代:2025 让 DeepSeek 更有趣更有深度的思考研究分析报告(24 页)
2025 军事领域人工智能应用场景、国内外军事人工智能发展现状及未来趋势分析报告(37 页)
华为:2025 鸿蒙生态应用开发白皮书(133 页
《超级智能战略研究报告》
中美技术差距分析报告 2025
欧洲量子产业联盟(QuIC):2024 年全球量子技术专利态势分析白皮书(34 页)
美国能源部:2021 超级高铁技术(Hyperloop)对电网和交通能源的影响研究报告(60 页)
罗马大学:2025 超级高铁(Hyperloop):第五种新型交通方式 - 技术研发进展、优势及局限性研究报告(72 页)
兰德公司:2025 灾难性网络风险保险研究报告:市场趋势与政策选择(93 页)
GTI:2024 先进感知技术白皮书(36 页)
AAAI:2025 人工智能研究的未来报告:17 大关键议题(88 页)
安联 Allianz2025 新势力崛起全球芯片战争与半导体产业格局重构研究报告
威达信:2025 全球洪水风险研究报告:现状、趋势及应对措施(22 页)
兰德公司:迈向人工智能治理研究报告:2024EqualAI 峰会洞察及建议(19 页)
哈佛商业评论:2025 人工智能时代下的现代软件开发实践报告(12 页)
德安华:全球航空航天、国防及政府服务研究报告:2024 年回顾及 2025 年展望(27 页)
奥雅纳:2024 塑造超级高铁(Hyperloop)的未来:监管如何推动发展与创新研究报告(28 页)
HSOAC:2025 美国新兴技术与风险评估报告:太空领域和关键基础设施(24 页)
Dealroom:2025 欧洲经济与科技创新发展态势、挑战及策略研究报告(76 页)
《无人机辅助的天空地一体化网络:学习算法技术综述》
谷歌云(Google Cloud):2025 年 AI 商业趋势白皮书(49 页)
《新兴技术与风险分析:太空领域与关键基础设施》最新报告
150 页!《DeepSeek 大模型生态报告》
军事人工智能行业研究报告:技术奇点驱动应用加速智能化重塑现代战争形态 - 250309(40 页)
真格基金:2024 美国独角兽观察报告(56 页)
璞跃(Plug and Play):2025 未来商业研究报告:六大趋势分析(67 页)
国际电工委员会(IEC):2025 智能水电技术与市场展望报告(90 页)
RWS:2025 智驭 AI 冲击波:人机协作的未来研究报告(39 页)
国际电工委员会(IEC):2025 智能水电技术与市场展望报告(90 页)
RWS:2025 智驭 AI 冲击波:人机协作的未来研究报告(39 页)
未来今日研究所 2025 年科技趋势报告第 18 版 1000 页
模拟真实世界:多模态生成模型的统一综述
中国信息协会低空经济分会:低空经济发展报告(2024 - 2025)(117 页)
浙江大学:2025 语言解码双生花:人类经验与 AI 算法的镜像之旅(42 页)
人形机器人行业:由 “外” 到 “内” 智能革命 - 250306(51 页)
大成:2025 年全球人工智能趋势报告:关键法律问题(28 页)
北京大学:2025 年 DeepSeek 原理和落地应用报告(57 页)
欧盟委员会 人工智能与未来工作研究报告
加州大学伯克利分校:面向科学发现的多模态基础模型:在化学、材料和生物学中的应用
电子行业:从柔性传感到人形机器人触觉革命 - 250226(35 页)
RT 轨道交通:2024 年中国城市轨道交通市场数据报告(188 页)
FastMoss:2024 年度 TikTok 生态发展白皮书(122 页)
Check Point:2025 年网络安全报告 - 主要威胁、新兴趋势和 CISO 建议(57 页)
【AAAI2025 教程】评估大型语言模型:挑战与方法,199 页 ppt
《21 世纪美国的主导地位:核聚变》最新报告
沃尔特基金会(Volta Foundation):2024 年全球电池行业年度报告(518 页)
斯坦福:2025 斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191 页)
国际科学理事会:2025 为人工智能做好国家研究生态系统的准备 - 2025 年战略与进展报告(英文版)(118 页)
光子盒:2025 全球量子计算产业发展展望报告(184 页)
奥纬论坛:2025 塑造未来的城市研究报告:全球 1500 个城市的商业吸引力指数排名(124 页)
Future Matters:2024 新兴技术与经济韧性:日本未来发展路径前瞻报告(17 页)
《人类与人工智能协作的科学与艺术》284 页博士论文
《论多智能体决策的复杂性:从博弈学习到部分监控》115 页
《2025 年技术展望》56 页 slides
大语言模型在多智能体自动驾驶系统中的应用:近期进展综述
【牛津大学博士论文】不确定性量化与因果考量在非策略决策制定中的应用
皮尤研究中心:2024 美国民众对气候变化及应对政策的态度调研报告:气候政策对美国经济影响的多元观点审视(28 页)
空间计算行业深度:发展趋势、关键技术、行业应用及相关公司深度梳理 - 250224(33 页)
Gartner:2025 网络安全中的 AI:明确战略方向研究报告(16 页)
北京大学:2025 年 DeepSeek 系列报告 - 提示词工程和落地场景(86 页)
北京大学:2025 年 DeepSeek 系列报告 - DeepSeek 与 AIGC 应用(99 页)
CIC 工信安全:2024 全球人工智能立法的主要模式、各国实践及发展趋势研究报告(42 页)
中科闻歌:2025 年人工智能技术发展与应用探索报告(61 页)
AGI 智能时代:2025 年 Grok - 3 大模型:技术突破与未来展望报告(28 页)
上下滑动查看更多