
十四讲
文章平均质量分 91
记录学习过程
CA727
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【视觉SLAM】4b-特征点法估计相机运动之PnP 3D-2D
透视n点(Perspective-n-Point,PnP)问题是计算机视觉领域的经典问题,用于求解3D-2D的点运动。换句话说,当知道NNN个世界坐标系中3D空间点的坐标以及它们在图像上的投影点像素坐标时,可以使用PnP算法来估计相机在世界坐标系的姿态。P3P是最简化的PnP形式,即最少只需3个点即可估计当前的相机姿态(解不唯一)。总体来说,PnP的求解方法有P3P、直接线性变换(Direct Linear Transformation,DLT)、EPnP(Efficient PnP)和UPnP等。原创 2024-11-15 12:26:52 · 2080 阅读 · 0 评论 -
【视觉SLAM】4a-特征点法估计相机运动之对极几何2D-2D
对极几何(Epipolar Geometry)描述了同一场景中两幅图像(2D-2D)间的几何关系,在图像匹配、三维重建等领域应用广泛。接下来看如何从已知两幅图像的匹配点对(2D像素点)中恢复相机运动。原创 2021-04-16 10:36:25 · 12579 阅读 · 3 评论 -
【视觉SLAM】4-SLAM前端之视觉里程计Visual Odometry
在里程计问题中,可利用多种手段来测量物体的运动轨迹,如在汽车轮胎上安装计数码盘,通过测量轮胎转动圈数获得行驶距离。完成这种运动估计的装置(包括硬件和算法)称为里程计(Odometry)。里程计的一个很重要的特性是,它只关心局部时间上的运动,多为两个时刻间的运动。通常以估计间隔对时间采样,进而估计物体在各时刻之间的运动,这就导致误差(估计误差、噪声等)会不断累积,这种现象称为漂移(Drift)。SLAM流程中的回环检测可纠正漂移带来的全局误差。原创 2024-11-18 10:21:11 · 1399 阅读 · 0 评论 -
【视觉SLAM】3-李群与李代数
为什么需要李群&李代数?在处理空间变换相关优化问题时,变换矩阵对于加法计算不封闭(任意两个变换矩阵相加后不是一个变换矩阵),这主要是由于旋转矩阵对加法计算不封闭造成的。李代数的出现即可解决该问题,我们把空间变换矩阵(SE3SE(3)SE3)映射到由向量组成的李代数(se3se(3)se3)空间中,就可以通过对向量(李代数se3se(3)se3)求导来间接实现对变换矩阵的求导,从而用来解决一些空间变换相关的优化问题。群是一种集合加上一种运算的代数结构。若集合A≠∅A。原创 2021-01-02 15:55:48 · 8582 阅读 · 0 评论 -
【视觉SLAM】2a-Windows下编译Pangolin-0.5,显示SLAM运动轨迹
配置Pangolin,Pangolin_DIR定位到刚才导出的CMAKE_INSTALL_PREFIX子文件夹。原创 2024-11-11 11:13:27 · 442 阅读 · 0 评论 -
【视觉SLAM】2-三维空间刚体运动的数学表示
读书笔记:学习空间变换的三种数学表达形式。原创 2024-11-14 12:37:12 · 1605 阅读 · 0 评论 -
【视觉SLAM】1-概述
读书笔记。原创 2024-11-14 10:28:02 · 1428 阅读 · 0 评论