回溯法解决子集问题与全排列问题异同辨析

本文探讨了回溯法在子集问题(寻找列表的递归子集)和排列问题(全排列生成)中的应用区别,通过实例展示了如何在`Test`类中利用递归实现两种问题。子集问题中,选择元素遵循j+1的策略;而在排列问题中,顺序是i+1。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总体来说是回溯法,模板,框架整起来,但是差别还是有的。

//子集问题
public class Test {
  static   List<List<Integer>> res=new ArrayList<>();
    public static void main(String[] args) {
        List<Integer> list= Arrays.asList(1,2,3);
        LinkedList<Integer> li=new LinkedList<>();
       back(list,li,0);
        System.out.println(res);
    }
    private static void back(List<Integer> list, LinkedList<Integer> li, int i) {
        res.add(new ArrayList<>(li));
        if(i>=list.size()){
            return;
        }
        for (int j = i; j < list.size(); j++) {
            li.addFirst(list.get(j));
            back(list,li,j+1);//重点在这里
            li.removeFirst();
        }
    }
}

回溯法下一次进入哪里成了这两个问题的区别之处,子集问题中,确定了1 下一步应该是求23的子集吧,确定了2应该是求3的子集吧。所以应该是j+1。

排列问题中,确定了第一个位置的数, 下一步应该是求后两位的全排列吧,所以应该是i+1。

//全排列问题
public class Test {
  static   List<List<Integer>> res=new ArrayList<>();
    public static void main(String[] args) {
        List<Integer> list= Arrays.asList(1,2,3);
       back(list,0);
        System.out.println(res);
    }
    private static void back(List<Integer> list, int i) {

        if(i>=list.size()){
            res.add(new ArrayList<>(list));
            return;
        }

        for (int j = i; j < list.size(); j++) {
            swap(list,i,j);
            back(list,i+1);//重点在这里
            swap(list,i,j);

        }
    }

    private static void swap(List<Integer> list, int i, int j) {
        int temp=list.get(i);
        list.set(i,list.get(j));
        list.set(j,temp);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值