数学建模 13 SVM 支持向量机

用途:在数学建模中常用于分类,其核心是找到超平面,二维中是直线,三维中是平面,更高维中是超平面,最优超平面:平面到两边的距离最大。

属于机器学习中的监督学习,监督学习与非监督学习的区别 : 是否依赖带标签的训练数据

监督学习:(学生通过习题--答案学习)随机森林,逻辑回归,线性回归,SVM;

非监督学习:(学生通过无答案的资料自主总结数据规律)PCA , K-means , 深度学习;

关键概念:

支持向量,即距离超平面最近的点;删除支持向量外的点不影响超平面的位置

核函数,现实中多数数据无法用线性超平面分隔(如 “异或” 问题),SVM 通过核函数将低维非线性数据映射到高维空间,使其在高维空间中可线性分隔,无需直接计算高维空间的复杂映射,降低计算成本。

举例子!

对于(0,0),(1,1)属于A

对于(0,1),(1,0)属于B , 在二维空间中无论怎么划直线都不能将A与B划分清晰,

通过核函数做一个映射四个点分别是(0,0,0)(1,1,1)(1,0,0)(0,1,0)

这样就能在三维中通过一个平面来分开了。

软间隔,容错机制

适用范围:高维数据,中小样本量,缺失值少

.......待续......

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值