Flink SQL join类型

Flink提供了多种流式join操作,我们可以根据实际情况选择最适合自己的类型。下面开始介绍不同的join类型。

Regular Joins(常规join)

Regular Joins是最通用的join类型,和传统数据库的 JOIN 语法完全一致。对于输入表的任何更新(包含插入、更新、删除),都会触发实时计算和更新,因此它的结果是“逐步逼近”最终的精确值,也就是下游可能看到变来变去的结果。为了支持结果的更新,下游目的表需要定义主键 (PRIMARY KEY NOT ENFORCED)。

支持 INNER、LEFT、RIGHT 等多种 JOIN 类型,但是目前仅支持等值条件的连接(on x=y)。

Regular Joins 运行时需要保留左表和右表的状态,且随着时间的推移,状态会无限增长,最终可能导致作业 OOM 崩溃或异常缓慢。因此我们强烈建议用户在 Flink 参数中设置 table.exec.state.ttl 选项,它可以指定 JOIN 状态的保留时间(定义键的状态在多长时间内没被更新过就会被删除),以便 Flink 及时清理过期的状态,默认值是0 ms,即保存所有状态。

Flink SQL中的JOIN操作可以用于实时流处理,实时处理时需要使用Flink的DataStream API将数据流转换为Flink SQL中的Table,并且需要使用Flink的Table API或SQL API执行JOIN操作。 具体的实时JOIN操作步骤如下: 1. 将数据流转换为Table:使用Flink的DataStream API将实时数据流转换为Flink SQL中的Table,可以使用Flink的Table API或SQL API进行操作。例如,可以使用Table API的`fromDataStream`方法将DataStream转换为Table: ``` DataStream<Order> orderStream = ...; Table orderTable = tableEnv.fromDataStream(orderStream); ``` 2. 定义Table Schema:定义Table的结构,包括字段名和数据类型等。这可以通过Table API或SQL API进行定义,例如: ``` Table orderTable = tableEnv.fromDataStream(orderStream, "order_id, user_id, order_total"); ``` 3. 执行JOIN操作:使用Flink SQL中的JOIN操作对Table进行JOIN操作,可以使用Table API或SQL API进行操作。例如,可以使用SQL API的`SELECT`语句进行JOIN操作: ``` String joinSql = "SELECT o.order_id, o.order_total, u.user_name " + "FROM Orders o " + "LEFT JOIN Users u ON o.user_id = u.user_id"; Table joinResult = tableEnv.sqlQuery(joinSql); ``` 4. 输出结果:将JOIN操作后的结果输出到指定的目标位置,可以使用Flink的DataStream API将Table转换为DataStream,并输出到Kafka、MySQL等数据源。 ``` DataStream<Row> joinStream = tableEnv.toAppendStream(joinResult, Row.class); joinStream.addSink(...); ``` 总的来说,Flink SQL中的JOIN操作可以用于实时流处理,可以快速地将多个数据流进行JOIN操作,并输出到指定的目标位置。使用Flink SQL进行实时JOIN操作,可以大大简化代码编写和维护的工作,提高数据处理的效率和准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sf_www

谢谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值