/*
解题报告
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1159
算法:DP 最长公共子序列
思路:
最长公共子序列,英文缩写为LCS(Longest Common Subsequence)。其定义是,一个数列 S ,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 S 称为已知序列的最长公共子序列。
d[i][j]表示s1的第i位和s2的第j位之前的最长公共子序列长度.
转移方程:
d[i][j]=d[i-1][j-1]+1 (s1[i-1]==s2[j-1])
d[i][j]=max(d[i-1][j],d[i-1][j-1],d[i][j-1]) (s1[i-1]!=s2[j-1])
然而实际上
d[i][j]=max(d[i-1][j],d[i][j-1]) (s1[i-1]!=s2[j-1])
即可
因为dp[i-1][j-1] 必定小于等于dp[i-1][j],dp[i][j-1]
因为dp[i-1][j-1] => dp[i-1][j],dp[i][j-1];
*/
#include<iostream>
#include<string.h>
#define N 1010
int dp[N][N];
int max(int a,int b)
{
return a>b?a:b;
}
int main ()
{
char s1[N],s2[N];
while(scanf("%s%s",s1,s2)!=EOF)
{
int len1 = strlen(s1);
for(int i = 1; i <= len2; i++ )
dp[0][i] = 0;
for(int i = 1; i <= len1; i++ )
{
for(int j = 1; j <= len2; j++ )
if(s1[i-1] == s2[j-1] )
dp[i][j] = dp[i-1][j-1]+1;
else
dp[i][j] = max(dp[i-1][j],dp[i][j-1]);
}
printf("%dn",dp[len1][len2]);
}
return 0;
解题报告
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1159
算法:DP 最长公共子序列
思路:
最长公共子序列,英文缩写为LCS(Longest Common Subsequence)。其定义是,一个数列 S ,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 S 称为已知序列的最长公共子序列。
d[i][j]表示s1的第i位和s2的第j位之前的最长公共子序列长度.
转移方程:
d[i][j]=d[i-1][j-1]+1 (s1[i-1]==s2[j-1])
d[i][j]=max(d[i-1][j],d[i-1][j-1],d[i][j-1]) (s1[i-1]!=s2[j-1])
然而实际上
d[i][j]=max(d[i-1][j],d[i][j-1]) (s1[i-1]!=s2[j-1])
即可
因为dp[i-1][j-1] 必定小于等于dp[i-1][j],dp[i][j-1]
因为dp[i-1][j-1] => dp[i-1][j],dp[i][j-1];
*/
#include<iostream>
#include<string.h>
#define N 1010
int dp[N][N];
int max(int a,int b)
{
return a>b?a:b;
}
int main ()
{
char s1[N],s2[N];
while(scanf("%s%s",s1,s2)!=EOF)
{
int len1 = strlen(s1);
int len2 = strlen(s2);
for(int i = 1; i <= len1; i++ )
dp[i][0] = 0;for(int i = 1; i <= len2; i++ )
dp[0][i] = 0;
for(int i = 1; i <= len1; i++ )
{
for(int j = 1; j <= len2; j++ )
if(s1[i-1] == s2[j-1] )
dp[i][j] = dp[i-1][j-1]+1;
else
dp[i][j] = max(dp[i-1][j],dp[i][j-1]);
}
printf("%dn",dp[len1][len2]);
}
return 0;
}