
激光条纹中心提取
文章平均质量分 61
Charms@
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
数据增强(Data Augmentation)
目录前言1. Data Augmentation1.1 数据增强的作用2. 数据增强的手段3. 数据增强的代码3.1 代码3.2 结果前言最近写论文需要插入很多图片,为了蒙混过关,找了很多很多数据增强的手段,增强论文的丰富性,大家不要学我哈,反正我把技巧放这儿了!!!哈哈哈哈哈哈哈哈哈1. Data Augmentation1.1 数据增强的作用大家都知道在深度学习网络训练中,模型的样本越充足训练出来的网络模型泛化性越强,鲁棒性越高。最好的例子就是SSD对大目标效果很好,对小目标效果很差,但当原创 2022-03-28 11:17:33 · 16890 阅读 · 9 评论 -
激光条纹中心提取——Zhang-Suen法python
Zhang-Suen法Zhang-Suen法python代码Zhang-Suen法细化法(又称形态学骨架法)是通过对光条纹不断地进行腐蚀操作,剥离光条纹边界,得到单像素宽度的光条纹连通线(又称骨架)的形态学处理方法。该方法是通过细化技术,将光条纹区域的细化曲线作为光条纹中心线。 由于细化法是基于形态学的方法,只是对光条纹骨架进行提取,没有考虑到光条纹的横截面灰度分布特点。因此,细化法提取的光条纹中心线精度有限。另一方面,由于该方法需要大量时间来进行反复的细化操作,提取算法的运算速度被大大降低。细化的原创 2022-03-04 13:29:09 · 5779 阅读 · 0 评论 -
opencv二值图像分割——python
二值化图像图像二值化( Image Binarization)就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程。全局阈值cv2.threshold(src, thresholdValue, maxVal, thresholdingTechnique)src:输入灰度图像数组。thresholdValue:提及用于对像素值进行分类的值。maxVal:如果像素值大于(有时小于)阈值,则给出的值。thresholdingTechnique:要应用的阈值类型原创 2022-03-10 14:24:58 · 6569 阅读 · 0 评论 -
传统激光条纹中心提取算法研究现状
传统激光条纹中心提取算法研究现状前言一、边缘法二、中心法三、阈值法四、 细化法五、极值法六、灰度重心法七、方向模板八、曲线拟合法九、Steger前言光条中心提取是将宽度大于1的激光曲线用一根像素宽度为1的中心线表示出来,用这个中心线能比较容易地分析图像,提取图像相关特征。激光条纹中心提取的精度和速度直接影响三维测量的结果。对于理想的列车轮对踏面采集图像来说,沿图像亮带垂直方向作切面,在切面上的亮带能量分布应该满足高斯分布(由激光器特性决定)。取最亮点的连线作为亮带的中心线,即可得到列车轮对踏面的像。然而原创 2022-03-03 20:48:29 · 10164 阅读 · 2 评论 -
激光条纹中心提取——Steger法python
激光条纹中心提取——Steger法pythonStegerpython代码StegerSteger算法是目前使用最广泛的线结构光条纹中心提取算法之一,是由Steger在二十世纪末提出。Steger算法是基于Hessian矩阵(见式1-18)得到图像中光条纹的法线方向。图像中点的法线方向由该点的Hessian矩阵最大特征值的绝对值对应的特征向量给出,通过在法线方向上求极值点得到光条纹中心的亚像素位置。g(x,y)是二维高斯卷积核,用于突出光条的灰度分布特征。z(x,y)是以图像上的点(x,y)为中心,原创 2022-03-03 21:10:51 · 6293 阅读 · 10 评论 -
激光条纹中心提取——模板匹配法python
激光条纹中心提取——模板匹配法python模板匹配法python 代码模板匹配法方向模板法是由胡斌等提出的一种利用可变方向模板检测结构光条纹中心的方法,是基于灰度重心法的改进算法[5]。当线结构光投射到粗糙的物体材料表面时,光条纹会产生偏移与形变等现象,在精度要求不是很高的情况下,可近似地构建光条纹发生偏移的四个方向模板,即水平、垂直、左倾45°、右倾45°四个偏移方向。对应上述光条纹发生偏移的四种偏移模式,构建四个方向的模板(四种方向模板见式1-8、1-9、1-10、1-11、1-2),对光条纹截面各原创 2022-03-03 21:07:11 · 2334 阅读 · 3 评论 -
激光条纹中心提取——极值法python
激光条纹中心提取——极值法python极值法python代码极值法极值法首先需要获取光条纹横截面的灰度分布函数,并对其进行梯度运算。梯度值等于零处的像素点就是光条纹中横截面灰度极大值点,并将该点作为光条纹中心点。极值法要求激光条纹截面的灰度分布近似成理想高斯分布,由于受到环境噪声的影响,列车轮对表面的激光条纹灰度分布并不是理想的高斯分布,如果在这种情况下使用极值法提取光条纹中心线,得到的光条纹中心点有可能是局部的极值点,造成提取结果出现较大的误差。如图1-5左图所示,当光条的灰度分布成理想的高斯分布式,原创 2022-03-03 21:03:44 · 2104 阅读 · 1 评论 -
激光条纹中心提取——灰度中心法python
激光条纹中心提取——灰度中心法python灰度中心法python代码灰度中心法灰度重心法是根据每行光条纹横截面内的灰度分布特征逐行进行处理,通过在行坐标的方向上,逐行计算提取光条纹区域的灰度重心点,并将该点用来代表该截面的光条纹中心点位置,最后将所有中心点拟合形成光条纹中心线。具体操作步骤是,先对图像进行滤波除去噪声,然后再用阈值分割,保留大于阈值的部分,如图1-6左图是分割前的图像,图1-6右图是分割后的图像,其中区间(m, n)由阈值T决定。灰度重心法计算光条纹中心点的公式见式(1-7),光条纹第v原创 2022-03-03 21:00:06 · 7204 阅读 · 4 评论 -
激光条纹中心提取——ZhangSuen法python
ZhangSuen法:论文连接:A fast parallel algorithm for thinning digital patterns代码连接:https://github.com/bsdnoobz/zhang-suen-thinning上代码:代码1from scipy import weaveimport numpy as npimport cv2import sysdef _thinningIteration(im, iter): I, M = im, np.zeros(原创 2022-01-14 19:24:46 · 1068 阅读 · 0 评论 -
激光条纹中心提取——zhang细化+灰度重心法
优秀的zhang-suen细化+灰度重心法先用zhang-suen细化对激光光条做细化,然后在使用灰度重心法可以达到亚像素提取,精度还是可以的,但是对我的数据集不是很友好,代码是看其他博主的,代码可以参考代码连接----------论文连接上代码#include<opencv2/core/core.hpp>#include<opencv2/calib3d/calib3d.hpp>#include<opencv2/highgui/highgui.hpp>#in原创 2022-01-05 16:43:54 · 4520 阅读 · 4 评论 -
激光条纹中心提取——骨架提取法
粗暴的骨架法将形态学算法引入光条纹中心提取 单纯提取骨架导致精度不高;反复细化操作导致运算速度降低上代码#include <opencv2/opencv.hpp>#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc/imgproc.hpp>#include <stdio.h>using namespace std;using namespace cv;//-----原创 2022-01-05 22:50:55 · 1198 阅读 · 1 评论 -
激光条纹中心提取——方向模板法
老实的方向模板法方向模板匹配的精度往往受限模板的方向,并且由于大量的匹配运算消耗当量的时间,纹理复杂的物面会使条纹向更多方向发生偏移,优点就是能够克服白噪声干扰,具有在一定程度上修补断线的能力,通常方向模板和灰度重心法相结合较为常见。上代码clear;clcI = imread('6.png');img = imread('6.png');if ndims(I) == 3 I = rgb2gray(I);endthresh =20;[r,c] = size(I);for i原创 2022-01-05 19:00:05 · 3232 阅读 · 0 评论 -
激光条纹中心提取——方法总结
激光条纹中心提取——方法总结算法优势缺点边缘法处理速度快;适用于精度要求低的大型物体测量存在很大误差;要求图像质量较好且结构光特性较高中心法适用于条纹质量好且形状规则的物体测量;精度高于边缘法存在图像噪点影响,边缘线的提取会出现误差导致中心法的效果不佳计算速度快;算法简单计算速度快;算法简单适用于中心线位置的粗略估计易受噪声影响;提取精度较差细化法将形态学算法引入光条纹中心提取单纯提取骨架导致精度不高;反复细化操作导致运算速度降低极值法灰度.原创 2022-01-05 16:19:44 · 3157 阅读 · 0 评论 -
激光条纹中心提取——极值法
垃圾极值法极值法应该说是最垃圾的光条中心提取方法了,工业上基本看不到他,她不但对噪声敏感,而且对光条的灰度值分布有很高的要求,他呢原理简单没有技术含量,就是简单粗暴的认为光条灰度值最大的地方就是中心。上代码代码也好理解#include <opencv2\opencv.hpp>#include <iostream>#include <opencv2\imgproc\types_c.h>using namespace cv;using namespace st原创 2022-01-05 15:55:35 · 1602 阅读 · 0 评论 -
激光条纹中心提取——灰度重心法
菜鸡的灰度重心法灰度重心法的概念就不用我多哔哔了,做激光中心提取的同学都知道,灰度重心法应该说是最早的一种光条中心提取算法了,顾名思义就是根据灰度值的分布求出中心,所以往往要求灰度分布成高斯分布,但是实际情况是相反的,所以这种方法就只歇着,不过有很多灰度中心法结合或者改进比较常看到。上代码#include <opencv2/opencv.hpp>#include <iostream>#include <opencv2\imgproc\types_c.h>#i原创 2022-01-05 14:43:26 · 6419 阅读 · 0 评论 -
激光条纹中心提取——Steger
激光条纹中心提取-Steger好久没有记录了,记录一下今天学习的内容,据说Steger在激光条纹中心提取上神一般的存在。文章和代码都分享给大家了哈,其中有四个文件,3个C++,一个python,python一个抠图文件,3个c++包含背景图+原图, 单张图提取, 多张图提取。分享代码#include <opencv2\core.hpp>#include <opencv2\highgui.hpp>#include <opencv2\imgproc.hpp>#i原创 2022-01-04 22:05:15 · 5106 阅读 · 10 评论 -
cv2.eigen(hessian)
cv2.eigen(hessian)ret,eigenVal,eigenVec= cv2.eigen(hessian)返回值ret表示矩阵是否存在特征值,,eigenVal表示特征值, eigenVec表示特征向量例子import cv2import osimg = cv2.imread("./1.png")gray_origin = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)gray = cv2.GaussianBlur(gray_origin, (5, 5原创 2022-01-21 10:45:38 · 4464 阅读 · 0 评论