keras的模型保存与加载

本文详细介绍了在Keras中如何保存和加载模型,包括使用model.save()、model.save_weights()、model.to_json()和model.to_yaml()方法。其中,model.save()保存整个模型和权重,而model.save_weights()仅保存权重。此外,还讨论了如何通过load_model和model.load_weights()加载模型,并解释了如何在训练过程中保存模型并在之后继续训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在Keras中,我们常用到的保存模型的方式有四种:

model.save()
model.save_weights()
model.to_json()
model.to_yaml()

1.1 model.save()

这种方法是将Keras模型和权重保存在一个HDF5文件中,具体的方法:

save_path = r'F:\kerasdataset\mnist_test.h5'
model.save(save_path)

我们也可以使用代码来进行读取:

import h5py
# 模型地址
MODEL_PATH = r'F:\kerasdataset\mnist_test.h5'
# 获取每一层的连接权重及偏重
print("读取模型中...")
with h5py.File(MODEL_PATH, 'r') as f:
   dense_1 = f['/model_weights/dense_1/dense_1']
   dense_1_bias =  dense_1['bias:0'][:]
   dense_1_kernel = dense_1['kernel:0'][:]

   dense_2 = f['/model_weights/dense_2/dense_2']
   dense_2_bias = dense_2['bias:0'][:]
   dense_2_kernel = dense_2['kernel:0'][:]

print("第一层的连接权重矩阵:\n%s\n"%dense_1_kernel)
print("第一层的连接偏重矩阵:\n%s\n"%dense_1_bias)
print("第二层的连接权重矩阵:\n%s\n"%dense_2_kernel)
print("第二层的连接偏重矩阵:\n%s\n"%dense_2_bias)

 HDFView软件来打开这个保存的文件

1.2 model.save_weights()
这种也是获取网络权重的方法,其使用方法如下:

model_save_path =r'F:\kerasdataset\mnist_test.h5'
model.save_weights(model_save_path, by_name=True)


by_name这个参数有两种情况,默认为False:

by_name=False 的时候按照网络的拓扑结构来进行加载权重的。

by_name=True 的时候就是按照网络层名称进行加载权重的。

1.3 model.to_json()
这种方法只保存了模型结构,没有包含其权重信息,其使用方法如下:

json_save = model.to_json()
with open("modelsave.json", "w") as f:
  f.write(json_save)

 

1.4 model.to_yaml()
这种方法和model.to_json()一样,其用法如下:

yaml_save = model.to_yaml()
with open("modelsave.yaml", "w") as f:
  f.write(yaml_save)

上述方法中,最常用的还是model.save() 和model.save_weights()两种方式。

二、Keras模型的加载

模型的加载很简单,我们对不同的保存方式进行不同的加载即可:

2.1 model.save()方式模型的加载

from keras.models import load_model
save_path = r'F:\kerasdataset\mnist_test.h5'
model = load_model(save_path)

2.2 model.save_weights()方式模型的加载

model_save_path =r'F:\kerasdataset\mnist_test.h5'
model = model.load_weights(model_save_path)

2.3 model.to_json()和model.to_yaml()方式模型的加载

from keras.models import model_from_json
from keras.models import model_from_yaml
model_json = model_from_json(json_save)
model_yaml = model_from_yaml(yaml_save)

我们来总结一下他们的区别:

保存方式是否保存模型结构是否保存权重是否可以继续训练网络是否能进行模型预测
model.save()
model.save_weights()
model.to_json()加载权重后可以预测
model.to_yaml()加载权重后可以预测

三、Keras模型的继续训练

在实际的项目中,如果一个模型的训练时间很长(或者某种情况先要暂停),我们可以训练到某一个周期以后暂停模型的训练,等到需要的时候接着训练。那么这样的方案该怎么解决:

假设我们在模型的训练结尾使用

model.save(r'F:\kerasdataset\mnist_test.h5')

保存模型的操作。

接下来我们来看怎么继续加载这个模型进行训练,我们只需load后进行fit:

# 载入模型
model = load_model(r'F:\kerasdataset\mnist_test.h5')
# 继续训练模型2个epochs
model.fit(X_train, y_train, batch_size=64, epochs=2)

以上就是模型的加载和接着训练,下面如果要进行模型的评价和预测的话,可以参照手写字体识别的代码。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值