大神
tensorflow
解决Tensorflow 使用时cpu编译不支持警告 – 2019.05.04
tf.InteractiveSession()与tf.Session() – 2019.05.04
- 目前在pycahrm使用这两个session的不同体验分别是:
如果使用常规Session,不放在with块内,则不能使用:x.initializer.run() 这类初始化语句
只能使用 sess.run(x.initializer) 进行初始化
# 异常显示找不到合适的session
如果使用 InteractiveSession,
则可以不放在with语句块内,同样使用 x.initializer.run()
-- 方便在Jupyter Notebook中的IPython环境使用吧
TensorFlow学习笔记1:graph、session和op – 2019.05.04
reduce_sum()中的reduction_indices --2019.05.08
tf.argmax()解析 --2019.05.08
import tensorflow as tf
import numpy as np
test = np.array([[1, 2, 3], [2, 3, 4], [5, 4, 3], [8, 7, 2]])
t = tf.argmax(test, axis=1)
with tf.Session() as sess:
"""
张量调用方式 eval
操作节点调用方式 run
"""
print(t.eval()) # [2 2 0 0]
"""
tf.argmax接收的参数是ndarray,不是tensoeflow的张量
"""
交叉熵
一文搞懂交叉熵在机器学习中的使用,透彻理解交叉熵背后的直觉 --2019.05.03
Markdown
Markdown页内跳转实现方法 – 2019.05.06
python
手把手教你自己写一个Python模块,并将其发布并安装到自己的Python环境中去 – 2019.05.07
亲自动手写一个python库(二) --2019.05.07
收藏博主
专注于音频、图像、视频的呈现与处理。
用最简单的工具满足最主要的需求,力求高效简约。
Data Structures & Algorithms(12)