单结点更新
HDU http://acm.hdu.edu.cn/showproblem.php?pid=1166
线段数是二叉搜索树,类似区间树,它在各个节点保存一条线段(数组中的一段子数组),主要用于高效解决连续区间的动态查询问题,由于二叉结构的特性,它基本能保持每个操作的复杂度为O(logn)。
线段树的每个节点表示一个区间,子节点则分别表示父节点的左右半区间,例如父亲的区间是[a,b],那么(c=(a+b)/2)左儿子的区间是[a,c],右儿子的区间是[c+1,b]。
查询的思想是选出一些区间,使他们相连后恰好涵盖整个查询区间,因此线段树适合解决“相邻的区间的信息可以被合并成两个区间的并区间的信息”的问题。
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn = 5*(1e5+5);
int a[maxn];
struct segtree
{
int val;
}segnode[2*maxn+1];//结点,存储区间和区间有关的值
void build(int root,int start,int end)
{
if(start==end)
{
segnode[root].val=a[start];
//return;
}
else
{
int mid=(start+end)/2;
build(2*root+1,start,mid);
build(2*root+2,mid+1,end);
segnode[root].val=segnode[2*root+1].val+segnode[2*root+2].val;
}
}
void update(int root,int index,int delta,int start,int end)
{
if(start==end)//单个点 叶子节点
{
if(index==start)
segnode[root].val+=delta;
return;
}
int mid=(start+end)/2;
if(index<=mid)
update(2*root+1,index,delta,start,mid);
else
update(2*root+2,index,delta,mid+1,end);
segnode[root].val=segnode[root*2+1].val+segnode[root*2+2].val;
}
int query(int root,int start,int end,int qstart,int qend)
{
if(qend<start||qstart>end)return 0;//没有交集部分
if(qstart<=start&&qend>=end)return segnode[root].val;//有交集部分
int mid=(start+end)/2;
return query(2*root+1,start,mid,qstart,qend)+
query(2*root+2,mid+1,end,qstart,qend);//合并区间信息
}
int main()
{
int t;
// freopen("in.txt","r",stdin);
scanf("%d",&t);
for(int T=1;T<=t;T++)
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
char s[10];
int i,j;
printf("Case %d:\n",T);
build(0,1,n);
while(scanf("%s",s))
{
if(strcmp(s,"End")==0)
break;
scanf("%d%d",&i,&j);
if(strcmp(s,"Add")==0)
{
update(0,i,j,1,n);
}
if(strcmp(s,"Sub")==0)
{
update(0,i,-j,1,n);
}
if(strcmp(s,"Query")==0)
{
int ans=query(0,1,n,i,j);
printf("%d\n",ans);
}
}
}
}

本文详细介绍了线段树的数据结构及其在解决连续区间查询问题中的应用。通过具体实例展示了线段树的构建、更新及查询操作,并提供了一个完整的C++实现示例。
1万+

被折叠的 条评论
为什么被折叠?



