1115 Counting Nodes in a BST (30分)
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than or equal to the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Insert a sequence of numbers into an initially empty binary search tree. Then you are supposed to count the total number of nodes in the lowest 2 levels of the resulting tree.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤1000) which is the size of the input sequence. Then given in the next line are the N integers in [−1000,1000] which are supposed to be inserted into an initially empty binary search tree.
Output Specification:
For each case, print in one line the numbers of nodes in the lowest 2 levels of the resulting tree in the format:
n1 + n2 = n
where n1
is the number of nodes in the lowest level, n2
is that of the level above, and n
is the sum.
Sample Input:
9
25 30 42 16 20 20 35 -5 28
Sample Output:
2 + 4 = 6
题⽬目⼤大意:输出⼀一个⼆二叉搜索树的后两层结点个数a和b,以及他们的和c:“a + b = c”
分析:⽤用链表存储,递归构建⼆二叉搜索树,深度优先搜索,传⼊入的参数为结点和当前结点的深度 depth,如果当前结点为NULL就更更新⼤大深度maxdepth的值并return,将每⼀一层所对应的结点个数存储 在数组num中,输出数组的后两个的值~~
#include<bits/stdc++.h>
using namespace std;
struct st
{
int v;
struct st *l,*r;
};
st* build(st *root,int v)
{
if(root==NULL)
{
root=new st();
root->v=v;
root->l=root->r=NULL;
}
else if(v<=root->v)
{
root->l=build(root->l,v);
}
else
root->r=build(root->r,v);
return root;
}
vector<int>num(1010);
int maxdepth=-1;
void dfs(st *root,int depth)
{
if(root==NULL)
{
maxdepth=max(depth,maxdepth);
return;
}
num[depth]++;
dfs(root->l,depth+1);
dfs(root->r,depth+1);
}
int main()
{
int n,t;
scanf("%d",&n);
st *root=NULL;
for(int i=0; i<n; i++)
{
scanf("%d",&t);
root=build(root,t);
}
dfs(root,0);
printf("%d + %d = %d",num[maxdepth-1],num[maxdepth-2],num[maxdepth-1]+num[maxdepth-2]);
return 0;
}