在机器视觉系统中,光源的选择对图像质量和识别效果至关重要。特别是光源的颜色,会影响目标特征的对比度、图像的清晰度以及背景干扰的抑制效果。选择合适的光源颜色不仅能提升检测准确率,还能优化系统稳定性和算法效率。
一、白光光源:通用型标准参考光
白光光源覆盖整个可见光谱(波长范围约为380nm至750nm),具备良好的色彩还原能力,是机器视觉中最常用的通用光源。
主要特点:
- 可还原物体真实颜色,适合肉眼可识别特征的成像需求;
- 光谱分布均匀,图像细节丰富;
- 适用于大多数检测任务,常作为首选或测试基准。
适用场景:
- 检测任务初期的基线评估;
- 多种材质、多品类产品的统一成像;
- 对颜色还原性要求较高的应用场景。
二、蓝光光源:细节增强型光源
蓝光波长较短(约450nm至495nm),能被表面细小结构(如划痕、颗粒)更强烈地散射,适合突出金属等高反射材质表面的微观缺陷。
主要特点:
- 易增强微小瑕疵对比,提升缺陷识别效果;
- 镜面反射干扰较小,图像稳定性好;
- 但对人眼刺激较强,需注意操作安全。
适用场景:
- 金属表面划痕、凹凸、压痕等缺陷检测;
- 对结构边缘敏感的定位、对位场合;
- 需要增强轮廓清晰度的工业外观检测。
三、红光光源:穿透增强型光源
红光波长较长(约620nm至750nm),具有良好的穿透能力,适合检测深色、半透明物体内部或覆盖下的特征。
主要特点:
- 能穿透部分材料,实现深层检测;
- 对深色或暗部区域的表现更为突出;
- 成像偏暖色调,对特定颜色背景影响较小。
适用场景:
- 深色液体瓶(如口服液)中的字符读取;
- 半透明皮革、胶体等内部结构识别;
- 多层材质之间的界面或夹杂物探测。
四、绿色光源:背景抑制与对比增强光源
绿色光源波长范围在520nm至570nm之间,位于可见光中段,因其独特的色彩特性在复杂背景处理与字符识别中表现突出。
主要特点:
- 色彩居中,成像自然,适用于黑白相机系统;
- 对红色区域对比度高,可作为红色目标增强手段;
- 在绿色背景条件下可实现背景消隐,有助于提升有效信息区域的辨识度;
- 对人眼相对友好,适合长时间工作场合。
适用场景:
- 包装瓶盖、标签字符的背景干扰过滤;
- 红色字体、红色缺陷的突出显示;
- 目标与背景色差不显著时的对比增强处理。
五、色彩策略:相邻色与互补色的实际应用
除了光源颜色本身的物理特性,合理运用颜色对比策略(相邻色与互补色)也是机器视觉图像优化的重要手段。
1. 相邻色策略
相邻色是指光源颜色与被测物颜色在色环上相近或一致。当两者颜色接近时,其反射光在黑白图像中表现为较亮,有助于“消隐”背景或干扰内容。
应用示例:
- 绿色瓶盖表面有绿色批号字符时,使用绿色光源可以使其与背景融为一体,避免影响白色字符的识别效果。
2. 互补色策略
互补色指在色环中位置相对的颜色组合,例如红与绿、蓝与黄。互补色在黑白相机中会产生强烈的明暗对比,从而实现特征增强。
应用示例:
- 检测绿色背景上的白色字符时,使用红光照明可使背景变暗、字符更亮,从而提升识别成功率。
六、总结与选型建议
光源颜色选型需综合考虑以下因素:
光源颜色 | 波长范围(nm) | 主要特性 | 典型应用 |
---|---|---|---|
白光 | 380–750 | 色彩还原全面,通用性强 | 初始测试、通用视觉任务 |
蓝光 | 450–495 | 缺陷突出,反射抑制 | 金属表面划痕、细节增强 |
红光 | 620–750 | 穿透能力强,适合深色物体 | 深色液体/材料透视检测 |
绿光 | 520–570 | 对比度强,背景抑制优异 | 字符识别、互补色增强 |