
Halcon项目
文章平均质量分 90
整合完整Halcon算法与数据集
极客晨风
路虽远,行则将至;事虽难,做则必成。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
2D视觉系统标定流程与关键要求
相机标定是2D视觉系统实现高精度测量的关键步骤。本文从标定板尺寸选择、制作精度、图像采集等方面详细介绍了标定过程中的技术要点。标定板尺寸应为视野的1/3~1/2,制作精度需达0.01mm以内;图像采集需覆盖整个视野,包含不同旋转和倾斜角度,建议12~18张图像。通过Halcon标定助手评估图像质量,控制标定板精度、光照环境和镜头安装等关键因素,可实现0.01mm级的测量精度。严格遵循这些规范,能确保视觉系统满足工业检测等高精度应用需求。原创 2025-07-17 14:47:00 · 1375 阅读 · 0 评论 -
Halcon算子讲解:sort_region (附中文文档翻译)
在机器视觉领域中,图像区域的排序是一项非常常见的任务,尤其是在光学字符识别(OCR)、物体检测及排列分析等场景中,区域的排序直接影响到后续处理的效率和准确性。本文将围绕 HALCON 中的 `sort_region` 算子,详细讲解其功能、参数及使用场景。。原创 2024-12-03 09:06:24 · 2609 阅读 · 0 评论 -
形态学算子详解-腐蚀、膨胀、开运算、闭运算
在图像处理领域,**HALCON** 提供了功能强大的形态学算子,广泛应用于二值图像中区域的优化与处理。本文将以 HALCON 中基于圆形结构元素的四种基础形态学操作——**膨胀、腐蚀、开运算和闭运算**为例,详细介绍其原理、典型作用及实际使用场景,同时对比(处理前/处理后),以便清晰呈现操作效果。原创 2024-12-04 15:40:28 · 4446 阅读 · 2 评论 -
使用Halcon进行字符训练与识别的完整流程解析
通过对Halcon字符训练与识别流程的详细解析,我们可以看到其强大的OCR能力和灵活性。Halcon的字符训练与识别结合了高效的图像处理算法与强大的模型构建功能,适用于多种复杂场景,如车牌识别、文档扫描和工业检测等。如需获取更多Halcon相关代码或实验数据,请联系博主!原创 2024-12-19 15:24:50 · 1648 阅读 · 0 评论 -
深度学习OCR与传统OCR对比实验:图像数据集联系博主获取
为了让大家更直观地了解传统OCR和深度学习OCR的差异,我们在Halcon平台上进行了对比实验,从准确率和处理时间两个维度展开对比分析。如果您对本实验的数据集感兴趣,欢迎联系博主免费获取!原创 2024-12-19 15:16:52 · 2262 阅读 · 0 评论 -
关于油印印刷字体OCR识别的代码流程与解析(数据集联系博主索要)
本文将详细解析基于OCR技术对酸奶包装印刷字体进行识别的代码流程。本代码实现了从图像预处理、区域提取到字符识别的完整步骤。其主要应用场景是对工业生产中的油印或类似字体的批量识别需求。原创 2024-12-20 09:05:27 · 968 阅读 · 0 评论