LARS/LAMB:大批量训练的专用优化器简介

        从技术脉络看,LARS/LAMB其实是SGD和Adam的改进变种,关键在于适应大批量场景。用户可能遇到过batch size增大后精度下降的痛点。需要重点讲清楚:为什么传统优化器在大批量下失效?layer-wise自适应如何解决这个问题?特别是LAMB对BERT这类Transformer的意义——毕竟现在大模型训练是热点。要注意避免陷入数学证明的泥潭,但必须说清楚trust ratio这个核心创新点。可以类比之前MobileNet的深度可分离卷积——都是通过结构改造解决系统瓶颈。用户似乎欣赏这种“问题驱动创新”的叙述方式。最后要强调落地场景:比如LARS在ResNet-50训练中将batch size推到32K这样的惊人数据,以及LAMB如何促成BERT的快速训练。用户大概率需要这些具体案例佐证技术价值。

        我们来深入探讨一下专门为大批量训练(Large Batch Training)而设计的两个重要优化器:LARS(Layer-wise Adaptive Rate Scaling)和它的进化版LAMB(Layer-wise Adaptive Moments for Batch training)。理解它们的关键在于认识到传统优化器在大批量训练时遇到的瓶颈以及它们如何巧妙地解决这些问题。

背景:大批量训练的挑战

深度学习中,增大批量大小(Batch Size)具有显著的吸引力:

  1. 硬件利用率提升: 更好地利用现代GPU/TPU的并行计算能力,减少数据加载和同步开销。

  2. 训练速度加快: 理论上,增大K倍批量,每个epoch的迭代次数减少K倍。

  3. 梯度噪声降低: 大批量计算的梯度更接近整个数据集的“真梯度”,方差更小。

然而,简单地增大批量大小会带来一个严重问题:模型泛化能力下降(测试精度降低)。 这通常表现为训练损失下降,但验证损失/精度停滞甚至变差。

为什么会这样?核心原因与优化动态和学习率有关:

  1. 更新步长过大: 传统的优化器(如SGD, Adam)使用全局学习率。当批量增大K倍时,梯度估计的噪声方差减小了约K倍,意味着梯度方向更“确定”。如果保持学习率不变,权重更新的实际步长(学习率 * 梯度)会相对之前的“噪声梯度”时代过大,导致优化过程不稳定,容易跳过或震荡于平坦的最小值区域,而这些区域通常具有更好的泛化性。

  2. 不同层/参数的需求不同: 深度神经网络不同层的参数具有不同的尺度、梯度量级和更新敏感性。使用单一的全局学习率无法适应这种异构性,尤其在大批量下,这种不适应会被放大。

  3. 收敛到尖锐最小值: 理论分析和实践表明,小批量训练更倾向于收敛到平坦的、泛化性好的最小值;而大批量训练在传统优化器下更容易收敛到尖锐的、泛化性差的最小值。

解决方案的核心思路: 为了在增大批

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小宝哥Code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值