查找两个node的最近公共祖先。
参考一个最近公共祖先例子:http://blog.csdn.net/chencheng126/article/details/40450281
思路:
1,如果两个node在root的两边,则最近公共祖先就是root
2,如果两个node在root的左边,则把root->left作为root,递归
3,如果两个node在root的右边,则吧root->right作为root,递归
定义一个递归函数covers,来判断该节点是否能够到达原始节点。然后就可以很方便实现上面三种情况。
对于二叉查找树,如果两个节点的值都比root小,则在root左边;如果都比root大,则在root右边;如果都不是,则这个root就是LCA。
#include <iostream>
using namespace std;
struct TreeNode
{
int data;
TreeNode *left;
TreeNode *right;
TreeNode(int x):data(x),left(NULL),right(NULL) {}
};
//在二叉树中找最近公共祖先
class solution
{
public:
//check the node is in the tree
bool covers(TreeNode *root,TreeNode *n)
{
if(root == NULL) return false;
if(root == n) return true;
return covers(root->left,n) || covers(root->right,n);
}
TreeNode *commonAncestor(TreeNode *root,TreeNode *p,TreeNode *q)
{
if(covers(root->left,p) && covers(root->left,q))
return commonAncestor(root->left,p,q);
if(covers(root->right,p) && covers(root->right,q))
return commonAncestor(root->right,p,q);
return root;
}
};
//如果是二叉查找树
class solution2
{
public:
TreeNode *LCA(TreeNode *root,TreeNode *p,TreeNode *q)
{
if(root == NULL || p == NULL || q == NULL) return NULL;
if(max(p->data,q->data) < root->data)
return LCA(root->left,p,q);
else if(min(p->data,q->data) > root->data)
return LCA(root->right,p,q);
else
return root;
}
};