代码随想录训练营第四十二天| 188.买卖股票的最佳时机IV 309.最佳买卖股票时机含冷冻期 714.买卖股票的最佳时机含手续费 股票总结

188.买卖股票的最佳时机IV  

题目链接:188. 买卖股票的最佳时机 IV - 力扣(LeetCode)

讲解链接:代码随想录

动态规划五部曲:

1 定义dp二维数组 第i天的状态为j 用dp[i][j]表示所剩下的最大现金

除了0以外 偶数就是卖出 奇数就是买入

题目要求是至多有K笔交易 那么j的范围就定义为 2 * k + 1 就可以了

 2 确定递推公式 分为买入/持有 和 卖出/不持有

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i - 1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

选最大的,所以 dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可以类比剩下的状态,代码如下:

for (int j = 0; j < 2 * k - 1; j += 2) {
    dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
    dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}

dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票

买入/持有 dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);

卖出/不持有 dp[i][j + 2] = Math.max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);

3 初始化dp[0][j] 还是奇数为买入/持有 偶数为卖出/不持有

第0天没有操作 dp[0][0]  = 0

第0天买入 dp[0][1] = -prices[0]

第0天卖出 可以视为先买入再卖出 什么都不做 dp[0][2] = 0

第0天第二次买入 .......         可以类比为再次重复买入卖出的操作 但是他们相互抵消直至当前购买次数 dp[0][3] = -prices[0]..............以此类推

所以奇数位为买入 偶数位为卖出

4 确定遍历顺序 dp[i] 依靠 dp[i - 1]得出结果 所以是从前到后遍历

5 推导一下试试递推公式

粘一下代码随想录的图:

Java:

 

class Solution {
    public int maxProfit(int k, int[] prices) {
        if(prices.length == 0) return 0;
        //[天][股票状态]
        //股票状态 奇数表示第k次交易持有/买入 偶数表示第k次交易不持有/卖出 0表示无操作
        int len = prices.length;
        int[][] dp = new int[len][k*2 + 1];
        //dp数组的初始化 奇数位都是买入
        for(int i = 1; i < k * 2; i += 2){
            dp[0][i] = -prices[0];
        }

        for(int i = 1; i < len; i++){
            for(int j = 0; j < 2 * k - 1; j += 2){
                dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
                dp[i][j + 2] = Math.max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
            }
        }
        return dp[len - 1][2 * k];
    }
}

309.最佳买卖股票时机含冷冻期

题目链接:309. 买卖股票的最佳时机含冷冻期 - 力扣(LeetCode)

讲解链接: 代码随想录

这道题最关键的就是对dp状态的分析 分为四个状态

递推公式和初始化都要仔细分析 刚刚run就是dp下标有问题 逻辑上需要紧密相关联

dp定义:

dp[0][0] 第0天买入/持有

dp[0][1] 第0天保持卖出股票的状态 dp[0][1] = 0(用递推公式反推导)

因为第1天买入的递推公式需要dp[0][1] dp[1][0] = dp[0][1] - prices[i]; 他只能是0 不然逻辑有问题

dp[0][2] 第0天卖出股票 dp[0][2] = 0 

dp[0][3] 第0天冷静期 dp[0][3] = 0

class Solution {
    public int maxProfit(int[] prices) {
        if(prices == null || prices.length < 2) return 0;
        int[][] dp = new int[prices.length][4];

        //初始化dp
        dp[0][0] = -prices[0];//第0天买入
        dp[0][1] = 0;//第0天保持卖出股票状态的状态 看递推公式解释
        //第一天买入股票 就得从 dp[0][1] - prices[1]
        //按照实际意义来说 只能是0
        dp[0][2] = 0;//第0天卖出
        dp[0][3] = 0;//第0天冷静期

        for(int i = 1; i < prices.length; i++){
            /**
             * 分别为 买入股票操作 卖出股票的状态 卖出股票操作 冷静期
             */
            dp[i][0] = Math.max(Math.max(dp[i - 1][1] - prices[i], dp[i - 1][3] - prices[i]),dp[i - 1][0]);
            dp[i][1] = Math.max(dp[i - 1][1],dp[i - 1][3]);
            dp[i][2] = dp[i - 1][0] + prices[i];
            dp[i][3] = dp[i - 1][2];
        }
        //最后返回卖出股票 卖出股票状态 冷静期三个的最大值
        return Math.max(dp[prices.length - 1][1],Math.max(dp[prices.length - 1][2], dp[prices.length - 1][3]));
    }
}

 714.买卖股票的最佳时机含手续费  

题目链接:714. 买卖股票的最佳时机含手续费 - 力扣(LeetCode)

讲解链接:代码随想录

递推公式

dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] - prices[i]) 

dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] + prices[i] - fee)

前面做过类似的 这个就是在dp[0][1](持有或者卖出股票)的基础上加了个手续费要去掉

Java:

class Solution {
    public int maxProfit(int[] prices, int fee) {
        int[][] dp = new int[prices.length][2];
        dp[0][0] = -prices[0];
        dp[0][1] = 0;
        for(int i = 1; i < prices.length; i++){
            dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
            dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
        }
        return dp[prices.length - 1][1];
    }
}

股票总结 

引自代码随想录:

股票问题总结

总之做完就有收获 不懂的就静下心来再次理解 多看几次 多举例子推导公式 代码随想录给的解释很详细 但是还是要内化为自己的东西 打卡 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值