188.买卖股票的最佳时机IV
题目链接:188. 买卖股票的最佳时机 IV - 力扣(LeetCode)
讲解链接:代码随想录
动态规划五部曲:
1 定义dp二维数组 第i天的状态为j 用dp[i][j]表示所剩下的最大现金
除了0以外 偶数就是卖出 奇数就是买入
题目要求是至多有K笔交易 那么j的范围就定义为 2 * k + 1 就可以了
2 确定递推公式 分为买入/持有 和 卖出/不持有
达到dp[i][1]状态,有两个具体操作:
- 操作一:第i天买入股票了,那么dp[i][1] = dp[i - 1][0] - prices[i]
- 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]
选最大的,所以 dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][1]);
同理dp[i][2]也有两个操作:
- 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
- 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]
所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])
同理可以类比剩下的状态,代码如下:
for (int j = 0; j < 2 * k - 1; j += 2) {
dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}
dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票
买入/持有 dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
卖出/不持有 dp[i][j + 2] = Math.max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
3 初始化dp[0][j] 还是奇数为买入/持有 偶数为卖出/不持有
第0天没有操作 dp[0][0] = 0
第0天买入 dp[0][1] = -prices[0]
第0天卖出 可以视为先买入再卖出 什么都不做 dp[0][2] = 0
第0天第二次买入 ....... 可以类比为再次重复买入卖出的操作 但是他们相互抵消直至当前购买次数 dp[0][3] = -prices[0]..............以此类推
所以奇数位为买入 偶数位为卖出
4 确定遍历顺序 dp[i] 依靠 dp[i - 1]得出结果 所以是从前到后遍历
5 推导一下试试递推公式
粘一下代码随想录的图:
Java:
class Solution {
public int maxProfit(int k, int[] prices) {
if(prices.length == 0) return 0;
//[天][股票状态]
//股票状态 奇数表示第k次交易持有/买入 偶数表示第k次交易不持有/卖出 0表示无操作
int len = prices.length;
int[][] dp = new int[len][k*2 + 1];
//dp数组的初始化 奇数位都是买入
for(int i = 1; i < k * 2; i += 2){
dp[0][i] = -prices[0];
}
for(int i = 1; i < len; i++){
for(int j = 0; j < 2 * k - 1; j += 2){
dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
dp[i][j + 2] = Math.max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}
}
return dp[len - 1][2 * k];
}
}
309.最佳买卖股票时机含冷冻期
题目链接:309. 买卖股票的最佳时机含冷冻期 - 力扣(LeetCode)
讲解链接: 代码随想录
这道题最关键的就是对dp状态的分析 分为四个状态
递推公式和初始化都要仔细分析 刚刚run就是dp下标有问题 逻辑上需要紧密相关联
dp定义:
dp[0][0] 第0天买入/持有
dp[0][1] 第0天保持卖出股票的状态 dp[0][1] = 0(用递推公式反推导)
因为第1天买入的递推公式需要dp[0][1] dp[1][0] = dp[0][1] - prices[i]; 他只能是0 不然逻辑有问题
dp[0][2] 第0天卖出股票 dp[0][2] = 0
dp[0][3] 第0天冷静期 dp[0][3] = 0
class Solution {
public int maxProfit(int[] prices) {
if(prices == null || prices.length < 2) return 0;
int[][] dp = new int[prices.length][4];
//初始化dp
dp[0][0] = -prices[0];//第0天买入
dp[0][1] = 0;//第0天保持卖出股票状态的状态 看递推公式解释
//第一天买入股票 就得从 dp[0][1] - prices[1]
//按照实际意义来说 只能是0
dp[0][2] = 0;//第0天卖出
dp[0][3] = 0;//第0天冷静期
for(int i = 1; i < prices.length; i++){
/**
* 分别为 买入股票操作 卖出股票的状态 卖出股票操作 冷静期
*/
dp[i][0] = Math.max(Math.max(dp[i - 1][1] - prices[i], dp[i - 1][3] - prices[i]),dp[i - 1][0]);
dp[i][1] = Math.max(dp[i - 1][1],dp[i - 1][3]);
dp[i][2] = dp[i - 1][0] + prices[i];
dp[i][3] = dp[i - 1][2];
}
//最后返回卖出股票 卖出股票状态 冷静期三个的最大值
return Math.max(dp[prices.length - 1][1],Math.max(dp[prices.length - 1][2], dp[prices.length - 1][3]));
}
}
714.买卖股票的最佳时机含手续费
题目链接:714. 买卖股票的最佳时机含手续费 - 力扣(LeetCode)
讲解链接:代码随想录
递推公式
dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] - prices[i])
dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] + prices[i] - fee)
前面做过类似的 这个就是在dp[0][1](持有或者卖出股票)的基础上加了个手续费要去掉
Java:
class Solution {
public int maxProfit(int[] prices, int fee) {
int[][] dp = new int[prices.length][2];
dp[0][0] = -prices[0];
dp[0][1] = 0;
for(int i = 1; i < prices.length; i++){
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
}
return dp[prices.length - 1][1];
}
}
股票总结
引自代码随想录:
- 动态规划:121.买卖股票的最佳时机(opens new window)
- 动态规划:122.买卖股票的最佳时机II(opens new window)
- 动态规划:123.买卖股票的最佳时机III(opens new window)
- 动态规划:188.买卖股票的最佳时机IV(opens new window)
- 动态规划:309.最佳买卖股票时机含冷冻期(opens new window)
- 动态规划:714.买卖股票的最佳时机含手续费
总之做完就有收获 不懂的就静下心来再次理解 多看几次 多举例子推导公式 代码随想录给的解释很详细 但是还是要内化为自己的东西 打卡