2021-07-14 exgcd 求逆元

这篇博客介绍了如何使用exgcd算法求解整数x在模p意义下的逆元,即满足xy ≡ 1 (mod p)的最小正整数y。当逆元存在时,博主提供了递归求解的思路和代码片段。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【exgcd】求逆元

写在前面:

okokokokokokok!!!今天更新的第一篇!快乐!

DP专题我会尽快出的😢😢😢😢,望大家支持!!!

话不多说,开讲!

题目大意:

若x*y=1(mod p),则称y为x在mod p意义下的逆元。

现给出两个整数x,p(0<x<p),你需要找到x在mod p意义下最小的逆元y(y>0),当然也可能不存在逆元,请输出-1。

正解:

做exgcd最重要的,是会推公式。首先,设y为最小逆元的话,我们可得出式子:
x y = 1 ( m o d    p ) x y − z ∗ p = 1 ( m o d    ∞ ) 已 得 知 : x , p xy=1(\mod p) \\ xy-z*p=1(\mod ∞)\\ 已得知:x,p xy=1(modp)xyz

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值