材料力学优化算法:差分进化(DE)在新材料设计中的应用
绪论
差分进化算法简介
差分进化算法(Differential Evolution, DE)是一种基于群体智能的优化算法,由Rainer Storn和Kenneth Price在1995年提出。DE算法通过模拟自然进化过程,如繁殖、交叉和选择,来寻找复杂问题的最优解。与遗传算法相比,DE算法操作简单,参数少,易于实现,且在解决高维、非线性、多模态优化问题时表现出色。
差分进化算法的基本步骤
- 初始化群体:随机生成一定数量的个体,每个个体代表一个可能的解。
- 变异操作:对于群体中的每个个体,选择另外三个个体,计算它们之间的差分向量,并将这个差分向量加到当前个体上,生成一个新的变异个体。
- 交叉操作:将变异个体与原个体进行交叉操作,生成试验个体。交叉操作通过一定的概率决定是否将变异个体的某个维度的值替换为原个体的值。
- 选择操作:比较试验个体与原个体的适应度,选择适应度更高的个体进入下一代群体。
- 重复迭代:重复执行变异、交叉和选择操作,直到满足停止条件。
差分进化算法在新材料设计中的应用
新材料设计是一个多目标、多约束的优化问题,涉及材料的结构、性能和成本等多方面因素。