AI 的许多核心算法,如机器学习中的分类、回归等,其底层逻辑都与概率统计紧密相关,贝叶斯学派和频率学派的理论为这些算法提供了不同的思路和支撑,掌握它们能帮助我们看透 AI 运行的本质。与此前那些充斥着代码演示的章节不同,本章将纯粹聚焦于理论层面,一起梳理下相关的得内容。
当医生告诉患者 “手术成功的概率是 90%” 时,这个数字背后隐藏着两种截然不同的思考方式。频率学派会解释为 “在过去 100 次同类手术中,有 90 次获得了成功”;而贝叶斯学派则更可能理解为 “根据现有医疗数据和患者具体情况,我有 90% 的把握认为手术会成功”。这种看似细微的差异,恰恰折射出两大统计学派长达三个世纪的深刻分歧。而理解这两大学派的核心思想,对于深入了解人工智能至关重要。
一、概率革命
17 世纪中期,当帕斯卡和费马在赌场中解决赌博问题时,他们恐怕不会想到,这个关于骰子和硬币的研究将奠定现代概率论的基础。频率学派的思想在此时已初现端倪 ——概率被定义为事件在长期重复试验中出现的相对频率。如果我们抛一枚硬币 1000 次,正面朝上出现了 503 次,那么根据频率学派的观点,这枚硬币正面朝上的概率就是 50.3%。
这种思维方式在工业革命时期展现出强大的实用性。工厂主需要通过抽样检测判断一批产品的合格率,保险公司要根据历史数据计算火灾发生的概率,这些场景都符合 “可重复试验” 的前提。频率学派通过严格的数学推导,建立起置信区间、显著性检验等整套方法论,成为 20 世纪统计学的主流范式。直到今天,我们在科学论文中看到的 “p<0.05” 显著性水平,仍是频率学派思想的直接体现。
二、贝叶斯的信念世界
与频率学派不同,贝叶斯学派的起源带有浓厚的主观色彩。18 世纪,英国数学家托马斯・贝叶斯在一篇遗作中提出了一个颠覆性的观点:概率可以表示对某个命题的信念强度。这种信念不是固定不变的,而是会随着新证据的出现而动态更新。
贝叶斯公式的核心 ——P (A|B)=P (B|A) P (A)/P (B),看似简单却蕴含着深刻的哲学思想。其中 P (A) 被称为先验概率,代表我们在获取新信息前对事件 A 的信念;P (A|B) 则是后验概率,反映了在得知事件 B 发生后对 A 的信念更新。这种 “先验 + 数据 = 后验” 的逻辑,构成了贝叶斯推理的完整链条。
在 GPS 导航中,贝叶斯思想的应用堪称精妙。系统首先根据历史数据(先验)预测你可能的行驶路线,随着你不断转弯、变道(新数据),它会实时更新对你当前位置和目的地的判断(后验)。这种动态调整能力,正是贝叶斯方法应对不确定性的独特优势。
三、哲学战场上的三大分歧
两大学派的根本冲突,本质上是对概率本质的不同理解造成的。在频率学派眼中,概率是客观存在的物理属性,就像物体的质量一样不依赖于人的主观认知;而贝叶斯学派则认为,概率是主观信念的量化表达,不同观察者基于不同信息可以对同一事件赋予不同概率。
这种哲学差异直接导致了方法论上的分歧。频率学派坚持通过大量重复试验来估计概率,对无法重复的事件(如 “明天股市上涨”)拒绝赋予概率;贝叶斯学派则坦然接受主观先验,认为即使没有历史数据,也可以通过先验信念和新信息的结合做出判断。当面对新冠疫情这类前所未有的突发事件时,贝叶斯方法能够快速整合有限数据和专家经验,为决策提供及时支持,而频率学派的传统方法则往往因缺乏足够样本而束手无策。
在参数估计问题上,两派的对立更加明显。频率学派将待估参数视为固定不变的常数,试图通过样本数据找到最优估计值;贝叶斯学派则将参数视为随机变量,用概率分布描述其不确定性。这种差异在机器学习领域表现为:频率学派更倾向于支持向量机、决策树等算法,而贝叶斯学派则发展出贝叶斯网络、马尔可夫链蒙特卡洛等独特方法。
四、现实世界的融合与妥协
有趣的是,在实际应用中两大学派并非泾渭分明。现代统计学更像是一场精妙的融合艺术 —— 当样本量足够大时,贝叶斯方法的后验分布会逐渐收敛到频率学派的估计结果,先验信息的影响被稀释;而频率学派发展出的经验贝叶斯方法,则巧妙借用了先验分布的思想处理复杂数据。
在人工智能领域,这种融合趋势更为显著。AlphaGo 在围棋对弈中,既使用了频率学派的蒙特卡洛树搜索(基于大量模拟对局),又运用了贝叶斯思想动态调整落子策略。自动驾驶系统处理路况时,既需要频率学派的统计模型识别交通标志(基于海量标注数据),又依赖贝叶斯滤波实时更新对周围环境的判断。
这场持续三个世纪的学术之争,最终在解决实际问题的过程中找到了平衡点。正如统计学家乔治・博克斯所言:“所有模型都是错误的,但有些是有用的。” 无论是将概率视为客观频率还是主观信念,其价值终究体现在帮助人类应对不确定性的能力上。当我们下次听到 “降雨概率 70%” 时,或许不必纠结于这个数字的哲学内涵,而应思考:在这个不确定的世界里,我们该如何更好地结合已有经验和新信息,做出最合理的决策 —— 这恰恰是两大学派共同带给我们的智慧启示。
最后小结
贝叶斯学派与频率学派围绕概率本质展开了长期争论,频率学派将概率视为事件在长期重复试验中出现的相对频率,强调客观性和大量重复试验,在工业革命等依赖可重复试验的场景中实用性强;贝叶斯学派则把概率看作对命题的信念强度,认为其会随新证据动态更新,在应对不确定性和处理有限数据时更具优势。两派在哲学认知、方法论和参数估计等方面存在分歧,但在现实应用中呈现融合趋势,共同为人类应对不确定性、做出合理决策提供助力。理解它们的差异与融合,能让我们更清晰地认识概率世界的复杂与奇妙。