一、什么是GPU虚拟化
(一)定义
GPU虚拟化是一种将物理GPU(图形处理器)资源分割成多个虚拟GPU的技术,使得多个用户或虚拟机(VM)能够共享同一个物理GPU,就好像每个用户或VM都拥有自己独立的GPU一样。
(二)目的
1. 资源利用率提升
在数据中心等环境中,物理GPU设备价格昂贵。通过GPU虚拟化,可以让多个用户或应用同时使用一个GPU,避免资源闲置,从而提高硬件资源的投资回报率。例如,在一个深度学习训练的集群中,多个研究小组可能在不同时段有不同的模型训练任务,GPU虚拟化允许这些小组共享昂贵的GPU资源。
2. 隔离性保障
尽管多个用户或应用共享GPU,但每个虚拟GPU在功能上是相对独立的。这意味着一个用户或应用的操作不会对其他用户或应用的GPU使用产生干扰。就像在一栋公寓楼里,每个房间(虚拟GPU)有自己的空间,住户(用户或应用)可以在自己的房间内自由活动,不会轻易影响到其他住户。
二、GPU虚拟化的类型