ElasticSearch基础(二)

本文档详细介绍了如何使用Elasticsearch的Java API进行索引、映射、文档的创建、删除、修改和查询操作,包括全文搜索、模糊匹配、短语查询、布尔组合查询、过滤器、分页和排序等功能。示例代码涵盖基本的增删改查,以及高级查询技巧,如Levenshtein编辑距离、多字段匹配、高亮显示等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

接上篇

java-api-client

一、ElasticSearch常用编程操作

1、索引相关操作

1.1创建索引

  @Test
    public void createIndex() {
        //准备创建索引 ,指定索引名 执行创建的动作(get方法)
        transportClient.admin().indices().prepareCreate("blog03").get();
    }

1.2删除索引

  //删除索引
    @Test
    public void deleteIndex() {
        //准备删除索引 ,指定索引名 指定删除的动作(get)
        transportClient.admin().indices().prepareDelete("blog03").get();
    }

2、映射相关操作

2.1映射格式

"mappings" : {
    "article" : {
        "properties" : {
            "id" : { "type" : "long","store":"true" },
            "title" : { "type" : "text","analyzer":"ik_smart","index":"true","store":"true" },
            "content" : { "type" : "text","analyzer":"ik_smart","index":"true","store":"true" }
        }
    }
}
@Test
    public void putMapping() throws IOException, ExecutionException, InterruptedException {
        //1.创建索引
        //transportClient.admin().indices().prepareCreate("blog03").get();
        //2.创建映射 设置针对某一个索引进行映射
        PutMappingRequest putMappingRequest = new PutMappingRequest("blog03");
        //设置类型
        putMappingRequest.type("article");
        //设置具体的映射关系

        XContentBuilder xContentBuilder = XContentFactory.jsonBuilder()
                .startObject()//{
                    .startObject("article") //"article" : {
                        .startObject("properties") //"properties" : {
                            .startObject("id") //"id" : {
                                .field("type", "long")
                                .field("store", "false")
                            .endObject()
                            .startObject("title") //"title" : {
                                .field("type", "text")
                                .field("store", "true")
                                .field("analyzer", "ik_smart")
                                .field("index", "true")
                            .endObject()
                            .startObject("content") //"content" : {
                                .field("type", "text")
                                .field("store", "true")
                                .field("analyzer", "ik_smart")
                                .field("index", "true")
                            .endObject()

                        .endObject()
                    .endObject()
                .endObject();
        putMappingRequest.source(xContentBuilder);
        //创建映射
        transportClient.admin().indices().putMapping(putMappingRequest).get();
    }

3、文档相关操作

3.1创建文档

3.1.1通过ObjctMapper进行创建

//创建文档 /更新文档 使用的是ik分词器
@Test
public void createIndexAndDocument() throws Exception {
    //设置数据
    Article article = new Article();
    article.setTitle("华为手机很棒");
    article.setContent("华为手机真的很棒");
    article.setId(1L);
    IndexResponse indexResponse = transportClient
        .prepareIndex("blog02", "article", "1")
        .setSource(objectMapper.writeValueAsString(article), XContentType.JSON)
        .get();
    System.out.println(indexResponse);
}

3.1.2使用xcontentBuidler方式进行创建
提供JSON如下

{
    "id": 1,
    "content": "华为手机真的很棒",
    "title": "华为手机很棒"
}

实现创建文档

//创建使用JSON xcontentbuilder的方式来创建文档

/**
     *
     * {
         "id": 1,
         "content": "华为手机真的很棒",
         "title": "华为手机很棒"
     }
     *
     * @throws Exception
     */
@Test
public void createDocumentByJsons() throws Exception{
    XContentBuilder xContentBuilder = XContentFactory.jsonBuilder()
        .startObject()
        .field("id",2)
        .field("content","华为手机真的很棒你猜猜")
        .field("title","华为手机很棒但是我现在真的忧桑")
        .endObject();
    IndexResponse indexResponse = transportClient.prepareIndex("blog03", "article", "2").setSource(xContentBuilder).get();
    System.out.println(indexResponse);
}

3.2修改文档

修改文档和新增文档一样。当存在相同的文档的唯一ID的时候,便是更新。

3.3删除文档

//删除文档
@Test
public void deleteByDocument() {
    transportClient.prepareDelete("blog03", "article", "2").get();
	另一种
    //DeleteRequest xxx = new DeleteRequest("blog03","article","1");
	//transportClient.delete(xxx);
}

3.4查询文档

3.4.1批量添加文档数据

    @Test
    public void createDocument() throws JsonProcessingException {
        BulkRequestBuilder bulkRequestBuilder = transportClient.prepareBulk();

        long start = System.currentTimeMillis();
        for (long i = 0; i < 100000; i++) {
            Article article = new Article(i , "华为手机很棒" + i,"华为手机真的很棒"+i);

            String writeValueAsString = objectMapper.writeValueAsString(article);


            IndexRequest request = new IndexRequest("blog03","article", i + "")
                    .source(writeValueAsString, XContentType.JSON);
            bulkRequestBuilder.add(request);
        }
        //一次性提交
        BulkResponse bulkItemResponses = bulkRequestBuilder.get();
        long end = System.currentTimeMillis();
        System.out.println("消耗了:"+(end-start)/1000);

        System.out.println("获取状态:" + bulkItemResponses.status());
        if (bulkItemResponses.hasFailures()) {
            System.out.println("还有些--->有错误");
        }
    }

3.4.2文档的查询

全文查询

- 查询所有数据

//查询所有

@Test
public void matchAllQuery() {
    //1.创建查询对象,设置查询条件,执行查询动作
    SearchResponse response = transportClient
        .prepareSearch("blog03")
        .setTypes("article")
        .setQuery(QueryBuilders.matchAllQuery())
        .get();
    //2.获取结果集
    SearchHits hits = response.getHits();
    System.out.println("获取到的总命中数:" + hits.getTotalHits());
    //3.循环遍历结果 打印
    for (SearchHit hit : hits) {
        String sourceAsString = hit.getSourceAsString();
        System.out.println(sourceAsString);
    }
}

- queryStringQuery():字符串查询

使用它是先分词再进行查询的,而且默认不指定字段时,是使用默认的分词器default_field和defaul anlzyer来进行查询,如果指定了字段,则使用之前的映射设置的分词器来进行分词,当然也可以指定分词器

//如果不写任何查询字段,那么会默认使用默认的分词器进行分词查询(?)。用的是standard的标准分词器 进行查询default_field default_analyzer
// https://blog.csdn.net/u013795975/article/details/81102010
//如果指定了某一个字段,则会使用之前映射中指定的分词器进行查询。
//注意 他只能查询字符串类型数据,从字符串类型的字段中进行搜索, 如果不指定字段,则会查询所有的字段的值
@Test
public void queryStringQuery() {
    //1.创建查询对象,设置查询条件,执行查询动作
    SearchResponse response = transportClient
        .prepareSearch("blog03")
        .setTypes("article")
        .setQuery(QueryBuilders.queryStringQuery("手机").field("title"))
        .get();
    //2.获取结果集
    SearchHits hits = response.getHits();
    System.out.println("获取到的总命中数:" + hits.getTotalHits());
    //3.循环遍历结果 打印
    for (SearchHit hit : hits) {
        String sourceAsString = hit.getSourceAsString();
        System.out.println(sourceAsString);
    }
}

- matchQuery 匹配查询

执行全文查询的标准查询,包括模糊匹配(fuzzy matching )和短语(phrase )或接近查询(proximity queries)

返回与所提供的文本、数字、日期或布尔值匹配的文档。在进行匹配之前,将对提供的文本进行分析。
匹配查询是执行全文搜索的标准查询,包括模糊匹配选项。

@Test
public void matchQuery() {
    //1.创建查询对象,设置查询条件,执行查询动作
    SearchResponse response = transportClient
        .prepareSearch("blog03")
        .setTypes("article")
        .setQuery(QueryBuilders.matchQuery("title","华为手机真的很棒啊9"))
        .get();
    //2.获取结果集
    SearchHits hits = response.getHits();
    System.out.println("获取到的总命中数:" + hits.getTotalHits());
    //3.循环遍历结果 打印
    for (SearchHit hit : hits) {
        String sourceAsString = hit.getSourceAsString();
        System.out.println(sourceAsString);
    }
}
Levenshtein Edit distance

似乎在LeetCode里面也有,不过这里是为了解决另外的问题而做的。假设两个string,有三种不同的操作:添加,删除,替换。如何通过最少步骤让一个字符串变换成为另一个字符串?这个最少步骤数即为Levenshtein edit distance。做法是用动态规划

- termQuery词条查询

Term 翻译成词条。这个我们称为词条查询
查询时,不分词,将其作为整体作为条件去倒排索引中匹配是否存在。 简述为:不分词,整体匹配查询

//查询时,不分词,将其作为整体作为条件去倒排索引中匹配是否存在。 简述为:不分词,整体匹配查询
@Test
public void termQuery() {
    //1.创建查询对象,设置查询条件,执行查询动作
    SearchResponse response = transportClient
        .prepareSearch("blog03")
        .setTypes("article")
        .setQuery(QueryBuilders.termQuery("title", "手机"))
        .get();
    //2.获取结果集
    SearchHits hits = response.getHits();
    System.out.println("获取到的总命中数:" + hits.getTotalHits());
    //3.循环遍历结果 打印
    for (SearchHit hit : hits) {
        String sourceAsString = hit.getSourceAsString();
        System.out.println(sourceAsString);
    }
}

- multiMatch查询

//多字段匹配查询
    @Test
    public void multiMatchQuery() {
        //1.创建查询对象
        //2.设置查询的条件
        //3.执行查询
        SearchResponse searchResponse = transportClient.prepareSearch("blog03").setTypes("article")
                //匹配查询
                // 参数1 指定要搜索的内容
                // 参数2 指定多个字段的名称
                .setQuery(QueryBuilders.multiMatchQuery("很棒", "content", "title"))
                .get();
        //4.获取结果
        SearchHits hits = searchResponse.getHits();
        System.out.println("总命中数:" + hits.getTotalHits());
        for (SearchHit hit : hits) {
            //5.打印
            System.out.println(hit.getSourceAsString());
        }
    }

- wildcardQuery():模糊查询

//模糊搜索: 也叫通配符搜索
    //? 表示任意字符 一定占用一个字符空间,相当于占位符
    //* 表示任意字符 可以占用也可以不占用

    @Test
    public void wildcardQuery() {
        //1.创建查询对象,设置查询条件,执行查询动作
        SearchResponse response = transportClient
                .prepareSearch("blog03")
                .setTypes("article")
                .setQuery(QueryBuilders.wildcardQuery("title", "手?"))
                .get();
        //2.获取结果集
        SearchHits hits = response.getHits();
        System.out.println("获取到的总命中数:" + hits.getTotalHits());
        //3.循环遍历结果 打印
        for (SearchHit hit : hits) {
            String sourceAsString = hit.getSourceAsString();
            System.out.println(sourceAsString);
        }
    }

- 相似度查询fuzzyQuery()

//相似度查询 输入错误的单词也能搜索出来 针对英文 写错两个字母以内
//
@Test
public void fuzzyQuery() {
    //1.创建查询对象,设置查询条件,执行查询动作
    SearchResponse response = transportClient
        .prepareSearch("blog03")
        .setTypes("article")
        .setQuery(QueryBuilders.fuzzyQuery("title", "eaasticsearch"))
        .get();
    //2.获取结果集
    SearchHits hits = response.getHits();
    System.out.println("获取到的总命中数:" + hits.getTotalHits());
    //3.循环遍历结果 打印
    for (SearchHit hit : hits) {
        String sourceAsString = hit.getSourceAsString();
        System.out.println(sourceAsString);
    }
}

- 范围查询rangeQuery()

/**
     *  范围查询:如下代码 查询id 从0 到20之间的数据包含0 和20
     *  from  to
     *  gt lt
     */
@Test
public void rangeQuery() {
    //1.创建查询对象,设置查询条件,执行查询动作
    SearchResponse response = transportClient
        .prepareSearch("blog03")
        .setTypes("article")
         //gte >=
         //lte <=

         // from true  >=
         // to  true <=
        .setQuery(QueryBuilders.rangeQuery("id").from(0,true).to(20,true))
        .get();
    //2.获取结果集
    SearchHits hits = response.getHits();
    System.out.println("获取到的总命中数:" + hits.getTotalHits());
    //3.循环遍历结果 打印
    for (SearchHit hit : hits) {
        String sourceAsString = hit.getSourceAsString();
        System.out.println(sourceAsString);
    }
}

- PhraseMatch查询,短语匹配

单字段对某短语进行匹配查询,短语分词的顺序会影响结果

//内容必须和红豆一样,两个词紧挨着
MatchPhraseQueryBuilder matchPhraseQueryBuilder = QueryBuilders.matchPhraseQuery("content", "红豆")

3.4.3布尔查询boolQuery

bool查询 也叫做多条件组合查询,指在搜索过程中我们可以指定多种条件进行查询,例如:在JD我想买手机并且价格在500-2000之间的并且是苹果这个品牌的手机等等。那么这里面就需要多种条件组合在一起再执行查询。

当然执行查询的条件不一定是 都要满足,有可能是或者的关系,有可能是并且的关系,也有可能是非的关系。

Elasticsearch中定义了以下几种条件满足关系:

//MUST 必须满足条件 相当于AND
//MUST_NOT 必须不满足条件 相当于 NOT
//SHOULD 应该满足条件 相当于OR
//FILTER 必须满足条件 区别于MUST 它在查询上下文中查询

//多条件组合查询
//需求: 查询title为手机的,并且id在0-30之间的数据
//MUST  必须满足条件   相当于AND
//MUST_NOT 必须不满足条件  相当于 NOT
//SHOULD  应该满足条件   相当于OR
//FILTER  必须满足条件  区别于MUST 它在查询上下文中查询
@Test
public void boolquery() {
    //1.创建组合条件对象
    BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();
    //2.创建条件1 和条件2 将这两个条件组合在一起
    RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("id").from(0, true).to(30, true);
    TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("title", "手机");
    boolQueryBuilder
        .must(rangeQueryBuilder)
        .must(termQueryBuilder);
    //3.创建查询对象,设置查询条件,执行查询动作
    SearchResponse response = transportClient
        .prepareSearch("blog03")
        .setTypes("article")
        .setQuery(boolQueryBuilder)
        .get();
    //4.获取结果集
    SearchHits hits = response.getHits();
    System.out.println("获取到的总命中数:" + hits.getTotalHits());
    //5.循环遍历结果 打印
    for (SearchHit hit : hits) {
        String sourceAsString = hit.getSourceAsString();
        System.out.println(sourceAsString);
    }
}

3.4.5 过滤器

​ 过滤是针对搜索的结果进行过滤,过滤器主要判断的是文档是否匹配,不去计算和判断文档的匹配度得分,所以过滤器性能比查询要高,且方便缓存,推荐尽量使用过滤器去实现查询或者过滤器和查询共同使用。

MUST和FILTER的区别:

MUST 必须满足某条件,但是需要查询和计算文档的匹配度的分数,速度要慢
FILTER 必须满足某条件,但是不需要计算匹配度分数,那么优化查询效率,方便缓存。

在这里插入图片描述

@Test
    public void boolquery() {
        //1.创建组合条件对象
        BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();
        //2.创建条件1 和条件2 将这两个条件组合在一起
        RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("id").from(0, true).to(30, true);
        TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("title", "手机");
        boolQueryBuilder
                .filter(rangeQueryBuilder)
                .filter(termQueryBuilder);
        //3.创建查询对象,设置查询条件,执行查询动作
        SearchResponse response = transportClient
                .prepareSearch("blog02")
                .setTypes("article")
                .setQuery(boolQueryBuilder)
                .get();
        //4.获取结果集
        SearchHits hits = response.getHits();
        System.out.println("获取到的总命中数:" + hits.getTotalHits());
        //5.循环遍历结果 打印
        for (SearchHit hit : hits) {
            String sourceAsString = hit.getSourceAsString();
            System.out.println(sourceAsString);
        }
    }

3.4.6分页查询和排序

  • ES支持分页查询,传入两个参数:from和size。

    form:表示起始文档的下标,从0开始。
    size:查询的文档数量。

  • 可以在字段上添加一个或多个排序,支持在keyword、date、float等类型上添加,text类型的字段上默认是不允许添加排序。

//排序和分页 每页显示2行记录
//按照Id升序排列
@Test
public void pageAndSort() {
    //1.创建查询对象,设置查询条件,执行查询动作
    SearchResponse response = transportClient
        .prepareSearch("blog03")
        .setTypes("article")
        .setQuery(QueryBuilders.termQuery("title", "手机"))
        .setFrom(0)// (page -1)* rows 显示第一页
        .setSize(2)//rows
        .addSort("id", SortOrder.ASC)//升序 默认没有排序
        .get();
    //2.获取结果集
    SearchHits hits = response.getHits();
    System.out.println("获取到的总命中数:" + hits.getTotalHits());
    //3.循环遍历结果 打印
    for (SearchHit hit : hits) {
        String sourceAsString = hit.getSourceAsString();
        System.out.println(sourceAsString);
    }
}

现在需要先按照评分排序,再按照文档时间进行二次排序。
由于评分“_score”是个虚字段,排序时需要特殊处理。

SearchResponse searchResponse = client.prepareSearch("test")
                .setTypes("doc")
                .setQuery(multiMatchQuery)
                .addSort(SortBuilders.scoreSort().order(SortOrder.DESC))
                .addSort("updateTime",SortOrder.DESC)
                .highlighter(highlightBuilder)
                .setFrom((pageNum-1)*10)
                .setSize(20)
                .execute()
                .actionGet();
                

或者:

SearchResponse searchResponse = client.prepareSearch("test")
                .setTypes("doc")
                .setQuery(multiMatchQuery)
                .addSort(new ScoreSortBuilder())
                .addSort("updateTime",SortOrder.DESC)
                .highlighter(highlightBuilder)
                .setFrom((pageNum-1)*10)
                .setSize(20)
                .execute()
                .actionGet();

3.5 查询结果高亮操作

在这里插入图片描述

3.5.1 什么是高亮显示

在进行关键字搜索时,搜索出的内容中的关键字会显示不同的颜色,称之为高亮
3.5.2高亮显示的html分析

通过开发者工具查看高亮数据的html代码实现:

ElasticSearch可以对查询出的内容中关键字部分进行标签和样式的设置,但是你需要告诉ElasticSearch使用什么标签对高亮关键字进行包裹呢?

使用<em>高亮内容</em>

@Test
public void hight() throws Exception {
    //1.创建高亮配置
    HighlightBuilder highlightBuilder = new HighlightBuilder();
    highlightBuilder.field("title").preTags("<em style=\"color:red\">").postTags("</em>");
    //2.创建查询对象,设置查询条件,设置高亮 执行查询
    SearchResponse response = transportClient
        .prepareSearch("blog03")
        .setTypes("article")
        .setQuery(QueryBuilders.termQuery("title", "手机"))
        .highlighter(highlightBuilder)
        .setFrom(0)// (page -1)* rows
        .setSize(2)//rows
        .addSort("id", SortOrder.ASC)//升序
        .get();
    //3.获取结果集
    SearchHits hits = response.getHits();
    //4.循环遍历结果获取高亮数据
    System.out.println("获取高亮数据:>>>>" + hits.getTotalHits());
    //5.存储高亮数据
    for (SearchHit hit : hits) {
        //6.打印
        String sourceAsString = hit.getSourceAsString();//该数据不高亮
        Article article = objectMapper.readValue(sourceAsString, Article.class);

        Map<String, HighlightField> highlightFields = hit.getHighlightFields();
        StringBuffer sb = new StringBuffer();
        if (highlightFields != null && highlightFields.size() > 0) {
            HighlightField highlightField = highlightFields.get("title");//获取title这个高亮数据
            if (highlightField.getFragments() != null) {
                for (Text text : highlightField.getFragments()) {
                    sb.append(text.string());
                }
            }
        }
        if (sb.length() > 0) {
            article.setTitle(sb.toString());
        }
        System.out.println("文章的标题数据:" + article.getTitle());
    }
}

二、Spring Data ElasticSearch

2.1什么是Spring Data

​ Spring Data是一个用于简化数据库访问,并支持云服务的开源框架。其主要目标是使得对数据的访问变得方便快捷,并支持map-reduce框架和云计算数据服务。 Spring Data可以极大的简化JPA的写法,可以在几乎不用写实现的情况下,实现对数据的访问和操作。除了CRUD外,还包括如分页、排序等一些常用的功能。

​ Spring Data的官网:https://spring.io/projects/spring-data

2.2什么是Spring Data ElasticSearch

​ Spring Data ElasticSearch 基于 spring data API 简化 elasticSearch操作,将原始操作elasticSearch的客户端JAVA API 进行封装 。Spring Data为Elasticsearch项目提供集成搜索引擎。Spring Data Elasticsearch POJO的关键功能区域为中心的模型与Elastichsearch交互文档和轻松地编写一个存储库数据访问层。官方网站:http://projects.spring.io/spring-data-elasticsearch/

Spring boot 集成spring data elasticsearch的方式来开发更加的方便和快捷

  1. 创建Maven工程(jar),在pom文件导入坐标
  2. 创建pojo, 添加注解进行映射
  3. 创建Dao接口继承ElasticsearchRepository
  4. 创建配置文件进行配置springboot自动进行配置

1、添加依赖

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-elasticsearch</artifactId>
</dependency>

2、创建pojo, 添加注解

/**
 * @Document:放置到类上
 *    indexName = "blog1":表示索引的名称,(小写)
 *    type = "article":表示类型
 * @Id:放置到字段id上
 *    表示该字段的值存放到索引库的_id字段上,表示主键
 * @Field:放置到字段上
 *    store = true:表示该字段的值存储到索引库
 *    index = true:表示该字段的值要建立索引用于搜索
 *    analyzer = "ik_smart":建立索引的时候使用什么分词器
 *    searchAnalyzer = "ik_smart":数据搜索的时候使用什么分词器(可以不写)
 *    存放字段的数据类型
 *    type = FieldType.Text 	文本类型 分词
 * 	         FieldType.Keyword  文本类型 一定是不分词的
 */
@Document(indexName = "blog03",type = "article")
public class Article implements Serializable {

    @Id
    private Long id;

    @Field(index = true,searchAnalyzer = "ik_smart",analyzer = "ik_smart",store = true,type = FieldType.Text)
    private String title;

    @Field(index = true,searchAnalyzer = "ik_smart",analyzer = "ik_smart",store = true,type = FieldType.Text)
    private String content;

    public Article() {
    }
    public Article(long id, String title, String content) {
        this.id = id;
        this.title = title;
        this.content = content;
    }


    public Long getId() {
        return id;
    }

    public void setId(Long id) {
        this.id = id;
    }

    public String getTitle() {
        return title;
    }

    public void setTitle(String title) {
        this.title = title;
    }

    public String getContent() {
        return content;
    }

    public void setContent(String content) {
        this.content = content;
    }

    @Override
    public String toString() {
        return "Article{" +
                "id=" + id +
                ", title='" + title + '\'' +
                ", content='" + content + '\'' +
                '}';
    }
}

3、创建Dao接口继承ElasticsearchRepository

//Article 映射到ES的POJO
//Long 文档唯一标识的数据类型
public interface ArticleDao  extends ElasticsearchRepository<Article,Long>{

}

4、测试

@SpringBootTest
@RunWith(SpringRunner.class)
public class EsApplicationTest03 {
    @Autowired
    private ElasticsearchTemplate elasticsearchTemplate;

    @Autowired
    private ArticleDao dao;

    //创建索引
    //创建映射
    @Test
    public void createMapping() {
        elasticsearchTemplate.createIndex(Article.class);
        elasticsearchTemplate.putMapping(Article.class);
    }
}

3.Spring Data ElasticSearch常见操作

新增,

//创建文档/更新文档
@Test
public void createDocument() {
    Article article = new Article(1L, "你的手机很好看", "您的手机真的很好看");
    dao.save(article);
}

//批量创建文档
@Test
public void createDocumentS() {
    List<Article> articles = new ArrayList<Article>();
    for (long i = 0; i < 100; i++) {
        Article article = new Article(i, "你的手机很好看" + i, "您的手机真的很好看" + i);
        articles.add(article);
    }
    dao.saveAll(articles);
}

删除

//删除文档
@Test
public void DeleteDocument() {
    dao.deleteById(1L);
}

更新; 没有id对应的数据,就是新增; 有当前id对应的数据,就是更新

//创建文档/更新文档
@Test
public void createDocument() {
    Article article = new Article(1L, "你的手机很好看", "您的手机真的很好看");
    dao.save(article);
}

根据id查询

//根据ID查询
@Test
public void selectById() {
    Article article = dao.findById(1L).get();
    System.out.println(article);
}

查询所有

//查询所有文档
@Test
public void SelectDocument() {
    Iterable<Article> all = dao.findAll();
    for (Article article : all) {
        System.out.println(article);
    }
}

排序查询

    @Test
    //排序
    public void fun07(){
        Iterable<Article> iterable = articleDao.findAll( Sort.by(Sort.Order.asc("id")));
        for (Article article : iterable) {
            System.out.println(article);
        }
    }
@Test
public void selectAndPageSort() {
    //设置分页条件
    //参数1 当前页码 0 为第一页
    //参数2 每页显示的行
    //参数3 指定排序的条件    参数3.1 指定要排序的类型  参数3.2 指定要排序的字段
    Pageable pageable = PageRequest.of(0, 2, new Sort(Sort.Direction.ASC, "id"));
    Page<Article> articles = dao.findAll(pageable);
    System.out.println("总记录数:" + articles.getTotalElements());
    System.out.println("总页数:" + articles.getTotalPages());
    //获取当前页的集合
    List<Article> content = articles.getContent();
    for (Article article : content) {
        System.out.println(article);
    }

}

3.2自定义查询
常用查询命名规则

关键字命名规则解释示例
andfindByField1AndField2根据Field1和Field2获得数据findByTitleAndContent
orfindByField1OrField2根据Field1或Field2获得数据findByTitleOrContent
isfindByField根据Field获得数据findByTitle
notfindByFieldNot根据Field获得补集数据findByTitleNot
betweenfindByFieldBetween获得指定范围的数据findByPriceBetween
lessThanEqualfindByFieldLessThan获得小于等于指定值的数据findByPriceLessThan

测试

public interface ArticleDao  extends ElasticsearchRepository<Article,Long>{

    //根据title模糊查询
    List<Article> findByTitleLike(String title);

    //根据title模糊查询,根据id降序
    List<Article> findByTitleLikeOrderByIdAsc(String title);

    //模块查询,排序加分页
    Page<Article> findByTitleLikeOrderByIdAsc(String title,Pageable pageable);

}

高亮:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值