我拿在ImageNet上预训练过的ResNeXt101c64在6张日常图片进行测试。它在ImageNet上的top1准确率是79.5%,top5准确率是94.6%,来自论文。
第一张图片是城市夜景,里面有塔式钟楼,位于水边,水岸对面是一座山。ResNeXt以84%的概率认定这是一张拼图,约5%概率认定为海岸,2.6%的概率认定为湖岸,1.9%的概率认定为岬,0.8%的概率认定为钻井平台。这个分类错误成分比较大。
第二张图片是两位身着古装的女性。模型以70%的可能认定为有箍衬裙,以28%的可能性认为是罩裙。模型把人物的穿着识别的八九不离十。
第三张图是达芬奇的名画《最后的晚餐》。模型以76%的可能性把它认定为拱顶,10%的可能性认定为修道院。
第四张图片模型分类对了,至少认出是犬。
第五张图是不知姓名的山脉。模型首先把它认为是阿尔卑斯山,其次认为是峡谷,再次是湖岸。这个模型的分类结果还算是可以。
趣谈ResNeXt的泛化性能
最新推荐文章于 2022-07-07 19:04:40 发布