趣谈ResNeXt的泛化性能

ResNeXt101c64在ImageNet上预训练后,在6张日常图片测试中展现出混合的识别效果。尽管在某些场景如古装人物和犬的识别上有较好表现,但在城市景观、艺术作品和地标识别上出现较大误差,表明模型在泛化性能上仍有提升空间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我拿在ImageNet上预训练过的ResNeXt101c64在6张日常图片进行测试。它在ImageNet上的top1准确率是79.5%,top5准确率是94.6%,来自论文
第一张图片是城市夜景,里面有塔式钟楼,位于水边,水岸对面是一座山。ResNeXt以84%的概率认定这是一张拼图,约5%概率认定为海岸,2.6%的概率认定为湖岸,1.9%的概率认定为岬,0.8%的概率认定为钻井平台。这个分类错误成分比较大。城市夜景
第二张图片是两位身着古装的女性。模型以70%的可能认定为有箍衬裙,以28%的可能性认为是罩裙。模型把人物的穿着识别的八九不离十。古装女性
第三张图是达芬奇的名画《最后的晚餐》。模型以76%的可能性把它认定为拱顶,10%的可能性认定为修道院。
最后的晚餐
第四张图片模型分类对了,至少认出是犬。
犬
第五张图是不知姓名的山脉。模型首先把它认为是阿尔卑斯山,其次认为是峡谷,再次是湖岸。这个模型的分类结果还算是可以。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值