利用指示器随机变量计算掷n次骰子总和的期望值

本文解答了《算法导论》第三版中的一道题目,通过定义六个指示器随机变量来计算一次及多次投掷骰子结果的期望值。一次投掷的期望值为3.5,n次投掷的期望值则为3.5n。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是《算法导论》第三版的题目5.2-3:

利用指示器随机变量计算掷n次骰子总和的期望值。

解:

定义事件A为一次投掷结果小于等于1,B为一次投掷结果小于等于2,C为一次投掷结果小于等于3,D为一次投掷结果小于等于4,E为一次投掷结果小于等于5,F为一次投掷结果小于等于6。

定义指示器随机变量I{·}为:

                            I{x}=1   如果x发生,否则为0

一次投掷结果的期望E(X1)=E(I(A)+I(B)+I(C)+I(D)+I(E)+I(F))=1/6+2/6+3/6+4/6+5/6+6/6=3.5

那么n次投掷结果的期望E(X1+X2+...+Xn)=3.5n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值