在决定使用 pip 和 conda 安装包时,了解这两个包管理器之间的主要区别非常重要。以下是细分:
1.在使用 conda 安装的过程中, 可以先参考另外一台机器中对应虚拟环境配置成功的, 所设置的镜像源 , 使用 conda cofig --show
,
进行查看,
2. 设置, 将网络下载时,连接时间加长
conda config --set remote_connect_timeout_secs 60
conda config --set remote_read_timeout_secs 60;
3. 如果同时下载多个库, 导致需要的依赖很多, 容易引发中断时, 可以逐个 安装每个库, 但此时需要自己清楚各个库的依赖关系, 从而确定下载的先后顺序
在国内配置深度学习环境时, 如果需要的库是在国外的服务器时, 尽量在周六 , 周日早上人少的时候去下载配置, 避免由于多次下载中断影响 个人的精力。
1. 区别
1.1. Package Management System
- 包裹管理系统
Pip: :
Primarily used for Python packages.
主要用于 Python 包。
Installs packages from the Python Package Index (PyPI).
从 Python 包索引 (PyPI) 安装包。
Handles Python packages only; you may need to manage dependencies manually.
仅处理 Python 包;您可能需要手动管理依赖项。
Conda:
A general package manager that can manage packages written in any language (Python, R, Ruby, etc.).
一个通用的包管理器,可以管理以任何语言(Python、R、Ruby 等)编写的包。
Installs packages from the Anaconda repository or other configured channels.
从 Anaconda 存储库或其他配置的通道安装包。
Automatically manages dependencies and environments.
自动管理依赖项和环境。
1.2. Environment Management
Pip: 点:
Requires virtual environments (e.g., using venv or virtualenv) for managing project environments.
需要虚拟环境(例如,使用 venv 或 virtualenv)来管理项目环境。
Doesn’t natively support environment management.
本身不支持环境管理。
Conda:
Built-in environment management feature.
内置环境管理功能。
Allows you to create, export, and manage multiple isolated environments easily.
允许您轻松创建、导出和管理多个隔离环境。
1. 3. Dependency Resolution
- 依赖项解析
Pip: 点:
Performs dependency resolution during installation but may not handle complex dependencies well.
在安装过程中执行依赖项解析,但可能无法很好地处理复杂的依赖项。
Can lead to “dependency hell” if conflicts arise.
如果出现冲突,可能会导致 “依赖地狱”。
Conda: 康达:
Uses a more sophisticated dependency resolver.
使用更复杂的依赖关系解析程序。
Ensures that all dependencies are compatible before installation, reducing conflicts.
安装前确保所有依赖项兼容,减少冲突。
1. 4. Installation Speed
- 安装速度
Pip:
Generally installs packages from source, which can take longer.
通常从源安装包,这可能需要更长的时间。
May require compilation for some packages.
可能需要对某些软件包进行编译。
Conda:
Often installs precompiled binaries, leading to faster installation times.
通常会安装预编译的二进制文件,从而加快安装时间。
Ideal for data science packages that may have complex dependencies.
非常适合可能具有复杂依赖项的数据科学包。
1.5. Use Cases 5.
使用案例
Pip: :
Best suited for standard Python projects where you need packages from PyPI.
最适合需要 PyPI 软件包的标准 Python 项目。
Common in web development and general Python programming.
常见于 Web 开发和通用 Python 编程。
Conda:
Preferred in data science, machine learning, and scientific computing where complex dependencies are common.
在数据科学、机器学习和科学计算中,复杂依赖关系很常见,这是首选。
Useful for users working with multiple languages and environments.
对于使用多种语言和环境的用户非常有用。
Conclusion 结论
Both pip and conda have their strengths. If you’re primarily working with Python and need access to a wide ran