
图神经网络
文章平均质量分 84
介绍图神经网络的相关学习
ZhengXinTang
习重要! 学而实习之, 才叫学习!
只学而不习, 不实践, 这叫本末倒置, 丢了大头顾小头;
因缘际会,所有巧合即为 和合事物;
当一个人悄悄的在反省时,努力时,改过时, 命运的齿轮便被他转动了。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
图神经网络中的虚拟节点
当我们使用节点来构成图结构时,regular node: 常规的节点即代表了某一个局部特征, 即局部节点特征。virtual node: 普通的节点不同,有时会需要这样的一种特征, 该特征代表了该样本的全局信息,即全局特征, 而我们需要对这类全局特征来进行表示;在py G 的实现中, 使用虚拟节点来代表这类全局特征,原创 2025-05-08 15:08:45 · 343 阅读 · 0 评论 -
Graph Clustering with Graph Neural Networks
图神经网络(GNNs)在节点分类和链路预测等许多图分析任务上取得了最先进的结果。然而,图上重要的无监督问题(例如图聚类)已被证明更难以抵抗 GNN 的进步。图聚类与 GNN 中的节点池化具有相同的总体目标——这是否意味着 GNN 池化方法在图聚类方面做得很好?令人惊讶的是,答案是否定的——在简单基线(例如使用 k 均值聚类学习到的表示)效果良好的情况下,当前的 GNN 池化方法通常无法恢复簇结构。我们通过仔细设计一组实验来进一步研究图结构和属性数据中的不同信噪比场景。转载 2024-06-13 16:36:39 · 359 阅读 · 0 评论 -
图神经网络 PyG 入门介绍
Graph Neural Networks 简称 GNN,称为图神经网络,是深度学习中近年来一个比较受关注的领域。近年来 GNN 在学术界受到的关注越来越多,与之相关的论文数量呈上升趋势,GNN 通过对信息的传递,转换和聚合实现特征的提取,类似于传统的 CNN,只是 CNN 只能处理规则的输入,如图片等输入的高、宽和通道数都是固定的,而 GNN 可以处理不规则的输入,如点云等。可查看【GNN】万字长文带你入门 GCN。。转载 2024-06-03 15:31:04 · 1177 阅读 · 0 评论 -
graph Conv介绍
AXin theGraphConvGraphConv层中的邻接矩阵A与特征矩阵X的乘法是图卷积网络(GCN)中的关键操作。此操作对来自每个节点的邻居的节点特征执行局部加权聚合。GraphConv层中的邻接矩阵与节点特征矩阵的乘法执行 GCN 中邻居聚合的关键操作。这允许每个节点根据其邻居的特征更新其特征,从而通过图有效地传播信息并捕获图的局部结构。此操作与权重变换和可选的标准化相结合,使网络能够学习节点及其关系的有意义的表示。原创 2024-05-31 17:38:32 · 1481 阅读 · 0 评论 -
图数据集的加载
原文参考官方文档:torch_geometric.loader 库中, 该库中包含了多种 图数据集的 加载方式,这里主要介绍andDataLoader这两者之间的区别;原创 2024-05-31 11:34:29 · 794 阅读 · 0 评论 -
图分类之Hierarchical Graph Differentiable Pooling (下)
是为图结构数据设计的神经网络模型。它通过结合分层池机制扩展了传统图卷积网络(GCN)的功能。这种池化机制通过逐步减少节点数量,同时保留图的整体结构,帮助网络处理大型且复杂的图。通过引入软池机制来增强 GCN,该机制允许在大型复杂图中进行分层表示学习。它结合了多层图卷积和池化来创建输入图的鲁棒、多尺度表示,使其适用于各种图分类和预测任务。链接预测正则化进一步增强了其在池化过程中保持图的结构完整性的能力。该模型从传统的 GCN 层开始,将图卷积应用于输入节点特征。原创 2024-05-30 11:54:45 · 1012 阅读 · 0 评论 -
图数据集的构建
官方文档, 介绍如何创建图数据集尽管 PyG 已经包含许多有用的数据集,但您可能希望使用自记录或非公开可用的数据创建自己的数据集。自己实现数据集很简单,您可能需要查看源代码以了解各种数据集是如何实现的。但是,我们简要介绍了设置自己的数据集所需的内容。原创 2024-05-18 16:40:32 · 1093 阅读 · 0 评论 -
图分类之Hierarchical Graph Differentiable Pooling (上)
hard assignment:每个数据点都归到一个类别(i.e. cluster)。soft assignment:把数据点归到不同的类,分到每个类有不同的概率。assignment:文中涉及的assignment就是把节点分类、归类的意思。转载 2024-05-16 17:02:06 · 308 阅读 · 0 评论 -
02_graph 图分类任务
原文出自PYG 官方教程,说完的任务, 接下来就该介绍图分类任务了.翻译 2024-05-15 16:39:23 · 311 阅读 · 0 评论 -
graph 图数据集介绍
来源于论文Pitfalls of Graph Neural Network Evaluation。包含 58 个基础的分类数据集几何,如 “IMDB-BINARY”,“PROTEINS”等;引用网络数据集,包括“Cora”,“CiteSeer”,和 “PubMed”;关系实体网络,包括“AIFB”,“MUTAG”,“BGS”,“AM”;亚马逊网络数据集,包括“computers” 和 “Photo”,共同作者网络数据集,包括“CS” 和 “Physics”;节点代表文档,边代表引用关系。原创 2024-05-15 16:35:47 · 1652 阅读 · 1 评论 -
图神经网络与近似消息传递算法
该文提出了一种低复杂度的GNN增强AMP算法AMP-GNN,用于多输入多输出(MIMO)检测。GNN 模块解决了 AMP 探测器中多用户干扰消除的高斯近似不准确的问题。结果显示,与传统的AMP检测器相比,性能有了显著的提高。通过展开AMP算法的迭代去噪过程,建立了AMP-Net深度展开模型。该模型集成了去阻塞模块,以消除视觉图像压缩传感中的阻塞伪影。采样矩阵与其他网络参数联合训练,增强重建性能。有研究工作将图神经网络 (GNN) 与近似消息传递 (AMP) 算法和压缩传感相结合。原创 2024-04-12 16:55:47 · 771 阅读 · 0 评论 -
图卷积网络 Semi-supervised Classification with Graph Convolutional Networks
namedGCN.在这篇文章中,我们将仔细研究一个名为 GCN 的著名图神经网络之一。首先,我们将获得直觉,看看它是如何工作的,然后我们将更深入地了解它背后的数学原理。翻译 2024-04-11 11:07:33 · 462 阅读 · 0 评论 -
时间序列分析的图神经网络(GNN4TS)
如下图所示,其展示了一个基于任务的分类法,涵盖了时间序列分析中的主要任务和主流建模视角,并展示了GNN4TS的潜力,主要在时间序列预测、异常检测、插补和分类四个类别上展现。该综述首先从任务和方法论的角度对现有的工作进行分类和讨论,然后深入探讨了GNN4TS领域内的六个热门应用领域,并提出了几个潜在的未来研究方向。该综述进行了全面的回顾,不仅涵盖了领域的广度,还深入研究了各个研究的细节,并进行了细致的分类和讨论,为读者提供了对GNN4TS领域中最新技术的了解;如上图所示,四种任务下的GNN4TS的框架。转载 2024-01-17 09:14:30 · 1521 阅读 · 0 评论 -
异构图 神经网络xFraud :Explaniable Fraud transcation detection
https://github.com/safe-graph/graph-fraud-detection-papers原创 2024-01-11 09:11:11 · 487 阅读 · 0 评论 -
SimGNN:A Neural Network Approach to Fast Graph Similarity Computation
图相似性搜索是最重要的基于图的应用程序之一,例如查找与查询化合物最相似的化合物。图相似度/距离计算,例如图编辑距离(GED)和最大公共子图(MCS),是图相似度搜索和许多其他应用程序的核心操作,但在实践中计算成本很高。作者受最近神经网络方法在几种图应用(例如节点或图分类)中取得成功的启发,提出了一种基于神经网络的新方法来解决这个经典但具有挑战性的图问题,旨在减轻计算负担的同时保持良好的性能。转载 2024-01-04 14:24:57 · 448 阅读 · 0 评论 -
时序图神经网络
原文出自 时序人;#TSer**#**时间序列图神经网络是一种结合了图神经网络和时间序列分析的方法,用于对动态系统中的数据进行建模和预测。与传统的时间序列模型不同,图神经网络可以有效地捕捉时间序列数据中的时序信息和模式,并进行预测和分类。作为一种新兴的研究领域,时间序列GNN具有广泛的应用前景,它可以应用于各种实际问题,如股票价格预测、交通流量预测、健康状况预测等,通过有效地捕捉时间序列数据中的时序信息和模式,进行有效的预测和分类,为各领域的决策提供支持。2023年内有关时序GNN在应用方面的研究也有了新的转载 2023-12-29 17:03:21 · 1181 阅读 · 0 评论 -
图神经网络中的因果学习
关于公平性,因果方法,如因果干预[17],可以通过将GNNs暴露于事实和反事实图中,减轻节点敏感属性的偏见。通过捕获局部特征和全局图结构信息,GNNs在低维表示中保留了丰富的知识,极大地促进了一系列下游应用,例如生物信息学[2]、推荐系统[3]、知识表示[4]、[5]、人才分析[6]、城市计算[7]、[8]、[9]等。从图数据中指定感兴趣的因果变量,根据某些领域知识阐明这些变量之间的因果关系,并选择适当的因果学习方法来获取因果知识以提高下游应用中的可信度,这是具有挑战性的[21]、[24]、[26]。转载 2023-12-24 15:07:51 · 2374 阅读 · 2 评论 -
用于时空建模的图小波网络Graph WaveNet for Deep Spatial-Temporal Graph Modeling
时空数据挖掘问题大多数使用邻接矩阵来建模节点之间的属性关系,这种思路的一个基本假设是:节点信息取决于自身和邻居的历史信息。但这类模型的假设存在着一些问题:未能充分建模节点之间的依赖关系两个节点之间没有连边,但是有依赖关系两个节点虽然是邻居节点,但是没有依赖关系未能有效学习到时间的依赖关系RNN:迭代传播耗时(无法并行)、存在梯度爆炸/消失的问题CNN:需要迭代很多层,才能得到较大的感受野。转载 2023-12-21 15:00:53 · 379 阅读 · 0 评论 -
统一同质图和异质图的少样本图提示学习HGPrompt
不同的下游任务会关注输入图的不同特征,或者不同的异质性信息。实验结果证明,HGPrompt 的表现优于所有基线模型,证明 HGPrompt 能有效统一预训练中的同质图和下游任务中的异质图,从而将预训练知识释放到下游任务上。接下来,为了统一不同任务,我们主要遵循 GraphPrompt 的方法,通过将不同的任务实例转换为子图,并使用子图相似性计算作为通用的任务模板。在本文中,我们提出 HGPROMPT,一种新颖的预训练和提示学习框架,不仅统一了预训练和下游任务,还通过双模板设计统一了同质和异质图。转载 2023-12-21 14:48:20 · 302 阅读 · 0 评论 -
图神经网络的应用
在下面的架构中,句子中的单词是用单词嵌入来编码的。在下面的模型中,它在原始文本上滑动一个三个单词的窗口,以创建单词图。为了利用本体论,我们通过将嵌入的eᵢ与其父节点结合使用,学习出一个为节点cᵢ嵌入的网络gᵢ。例如,下面的第一行包含的对象与左侧的预期图像查询截然不同,尽管它们在视觉上是相似的。句子中的单词可以被建模为图中的节点,我们可以计算每个节点的隐藏表示,并使用它来标记序列(序列中的单词的标签)。像激光雷达这样的3D扫描仪会产生3D点云,一种带有坐标的3D空间中物体的表示,以及可能的颜色信息。转载 2023-12-20 09:21:39 · 118 阅读 · 0 评论 -
图神经网络的学习资料
https://graph-neural-networks.github.io/index.htmlhttps://github.com/matenure/GNNbook_relatedhttps://github.com/FighterLYL/GraphNeuralNetworkhttps://github.com/topics/graph-neural-networks原创 2023-12-11 09:44:03 · 118 阅读 · 0 评论 -
图神经网络处理 图片数据
(GNN)做CV的研究有不少,但通常是围绕点云数据做文章,少有直接处理图像数据的。对于224x224分辨率的图像,每16x16像素为一个Patch,也就是图数据中的一个节点,总共有196个节点。为了更准确评估ViG的性能,研究团队设计了ViT常用的同质结构(isotropic)和CNN常用的金字塔结构(Pyramid)两种ViG网络,来分别做对比实验。传统GCN会出现过度平滑现象,为解决这个问题,团队在图卷积层前后各增加一个线性层,图卷积层后再增加一个激活函数。开始面向外开放啦👇👇👇。翻译 2023-11-30 22:05:19 · 176 阅读 · 0 评论 -
图神经网络的介绍
该文献中,介绍了 多视图 的 图神经网络的学习;以及多视图 图神经网络的 对比学习,需要阅读;原创 2023-11-24 11:57:09 · 499 阅读 · 0 评论