最优化学习笔记(九)——基本的共轭方向算法

本文介绍了nn维二次型函数最小化问题的基本共轭方向算法,包括迭代公式与收敛性证明。该算法通过预设的共轭方向序列,在有限次迭代内达到全局最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、基本共轭方向算法

     对于n维二次型函数的最小化问题:

f(x)=12xTQxxTb

其中,Q=QT>0,xRn。因为Q>0,所以函数f有一个全局极小点,可以通过求解Qx=b得到。

基本共轭方向算法 给定初始点x(0)和一组关于Q共轭的方向d(0),d(1),,d(n1),迭代公式为(k0):

g(k)=f(x(k))=Qx(k)bak=g(k)Td(k)d(k)TQd(k)x(k+1)=x(k)+akd(k)

二、定理及其证明

对于任意初始点x(0),基本共轭方向算法都能在n次迭代之内收敛到唯一全局极小点x,即x(n)=x.

证明:由于方向d(i),i=0,1,,n1线性无关,因此,xx(0)Rn可以由它们线性表出,即:

xx(0)=β0d(0)+β1x(1)++βn1d(n1)

其中,βi,i=0,1,,n1为常数。
上式同时左乘d(k)TQ,
d(k)TQ(xx(0))=βkd(k)TQd(k)

整理下,可得:
βk=d(k)TQ(xx(0))d(k)TQd(k)

迭代点x(k)可以写为:
x(k)=x(0)+a0d(0)+a1x(1)++ak1d(k1)

则:
x(k)x(0)=a0d(0)+a1x(1)++ak1d(k1)

上式同时左乘d(k)TQ,因为g(k)=Qx(k)b,Qx=b,可得:
d(k)TQ(xx(0))=d(k)TQ(xx(k))=g(k)Td(k)

所以:
βk=g(k)Td(k)d(k)TQd(k)=ak

这说明x(n)=x.
证毕。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值