ETL学习-IDEA配置(java、maven)、IDEA连接(Hadoop、yarn、Spark)

一、准备:项目前期已配置好环境及必需软件

        项目前期的准备工作可参照:ETL学习-软件安装(Tomcat、Nginx、Hadoop、Zookeeper)        自启动管理:ETL学习-软件自启动管理(nginx、tomcat、zookeeper、root用户免密连接)

二、IDEA配置java环境

        使用IntelliJ IDEA 配置JDK(入门)

三、IDEA配置Maven环境

        使用IntelliJ IDEA 配置Maven(入门)

四、Spark集群搭建

        Hadoop集群+Spark集群搭建(一篇文章就够了)Spark-3.1.1单机安装教程

 五、IDEA中Big Data Tools插件连接Hadoop、yarn和Spark

        Big Data Tools完整攻略,一键连接Hadoop(包含连接yarn和Spark),其中修改yarn默认端口

六、Java提交作业到Hadoop集群

        大数据 - Java实现提交作业到Hadoop集群

七、Tips

        可在系统中新建文件存储各个软件端口号和路径

八、大数据学习笔记

### 关于HadoopSpark生态系统的操作与实战指南 #### Hadoop生态系统及其操作 Hadoop 是一种用于大规模数据存储和处理的开源框架,其核心组件包括 HDFS(分布式文件系统)和 MapReduce(分布式计算模型)。通过命令行可以运行诸如 WordCount 的经典示例程序来验证集群的功能性 `hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /input /output`[^1]。 为了更好地管理和监控作业执行情况,还可以配置历史服务器以便查看已完成的任务日志和其他相关信息[^1]。这一步骤对于调试以及性能优化至关重要。 #### Spark生态系统及其应用 相较于传统的MapReduce模式,Apache Spark 提供了一种更加快速灵活的大规模数据处理方式。它支持内存中的迭代运算,在机器学习等领域具有显著优势。如果希望深入理解如何利用Spark进行高效的数据分析,则可以从一些专门书籍入手获取指导信息: - **《Hadoop+Spark大数据分析实战》** 这本书籍不仅涵盖了基础理论还提供了丰富的实际应用场景介绍[^2]; - 另外像 **《Kettle构建Hadoop ETL系统实践》**, **《Cloudera Hadoop大数据平台实战指南》** 等也都是不错的选择因为它们各自侧重不同方面从而满足多样化需求; 此外还有针对特定编程语言如 Python 的相关内容比如 **《Python数据分析与挖掘实战》**, 它们能够帮助开发者更快地上手并解决具体业务问题. #### 开发环境准备 无论是使用Hadoop还是Spark都需要良好的本地开发测试条件作为支撑。通常建议按照如下顺序完成必要的软件部署工作: - Java JDK 安装确保版本兼容目标工具集的要求; - Apache Maven 构建管理器有助于简化依赖项管理工作流程 ; - IDE(Integrated Development Environment), 推荐选用Eclipse由于其强大的插件扩展能力特别适合大型项目维护. 上述过程已被详细记录下来可供参考查阅章节编号分别为 1.5.x 节部分描述了每一步的具体实施方法步骤.[^3] ```bash # 示例:启动YARN资源调度服务 start-yarn.sh # 查看当前活动节点状态 yarn node -list ``` 以上脚本展示了最基本的集群初始化指令集合, 更复杂的场景下可能还需要额外考虑安全机制设置等问题. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值