一、BP神经网络
这里介绍目前常用的BP神经网络,其网络结构及数学模型如下:
x为 n 维向量, y 为 n 维向量,隐含层有 q 个神经元。假设 N 有个样本数据,𝑦𝑡,𝑥𝑡,𝑡=1,2,…𝑁{y(t),x(t),t=1,2,…N}。从输入层到隐含层的权重记为: 𝑊𝑘𝑖(𝑘=1,2,..,𝑞,𝑖=1,2,…𝑛)W_ki (k=1,2,..,q,i=1,2,…n),从隐含层到输出层的权重记为:𝑊𝑘𝑖𝑘=1,2,…𝑞,𝑖=1,2,…𝑛 W_ki (k=1,2,…q,i=1,2,…n) 。
1)以澳大利亚信贷批准数据集为例,介绍Python神经网络分类模型的应用。具体计算流程及思路如下:
1.数据获取及训练样本、测试样本的划分
2.神经网络分类模型构建
(1)导入神经网络分类模块MLPClassifier。
from skl