用python实现神经网络

本文通过实例介绍了如何使用Python的scikit-learn库构建和应用BP神经网络模型。首先,以澳大利亚信贷批准数据集为例,展示了神经网络分类模型的构建过程,包括数据获取、模型训练、预测准确率计算。然后,利用发电场数据进行神经网络回归预测,演示了训练样本构建、预测样本构建和模型预测。整个过程中,详细解释了模型参数设置和方法调用,为实际问题的解决提供了清晰的步骤和代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、BP神经网络

这里介绍目前常用的BP神经网络,其网络结构及数学模型如下:
1f53b0badb5545938e97c25bf5860fa8.png

x为  n 维向量, y 为 n 维向量,隐含层有 q 个神经元。假设 N 有个样本数据,𝑦𝑡,𝑥𝑡,𝑡=1,2,…𝑁{y(t),x(t),t=1,2,…N}。从输入层到隐含层的权重记为: 𝑊𝑘𝑖(𝑘=1,2,..,𝑞,𝑖=1,2,…𝑛)W_ki (k=1,2,..,q,i=1,2,…n),从隐含层到输出层的权重记为:𝑊𝑘𝑖𝑘=1,2,…𝑞,𝑖=1,2,…𝑛 W_ki (k=1,2,…q,i=1,2,…n)  。 

1)以澳大利亚信贷批准数据集为例,介绍Python神经网络分类模型的应用。具体计算流程及思路如下:
1.数据获取及训练样本、测试样本的划分
2.神经网络分类模型构建

(1)导入神经网络分类模块MLPClassifier。

from skl

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值