机器学习入门第一讲---机器学习的简单介绍

人工智能(Artificial Intelligence,下面简称AI)、机器学习(Machine Learning,下面简称ML)、深度学习(Deep Learning,下面简称DL)是什么,三者有什么关系?

由于国家的重视,AI近几年非常的火,就算不是从事IT的也多多少少听过这个词。但是ML和DL可能行外的人就听得比较少。以下是维基百科对三者的定义:

计算机科学中, 人工智能AI),有时也称为机器智能,是机器展示的智能,与人类展示的自然智能形成鲜明对比。通俗地说,术语“人工智能”通常用于描述模仿人类与人类思维相关的“认知”功能的机器(或计算机),例如“学习”和“解决问题”。

 机器学习ML)是科学研究算法统计模型计算机系统使用,而无需使用明确的指示,依靠模式和执行特定任务的推论来代替。它被视为人工智能的一个子集。机器学习算法基于样本数据建立数学模型,称为“ 训练数据 ”,以便在没有明确编程以执行任务的情况下进行预测或决策。机器学习算法用于各种各样的应用,例如电子邮件过滤计算机视觉,其中开发用于有效执行任务的传统算法是困难的或不可行的。

 深度学习 (也称为深层结构学习 或分层学习)是基于人工神经网络的更广泛的机器学习方法系列的一部分。学习可以是监督半监督无监督

其实从维基百科的简述中就可以看到,AI其实就是一个结果, ML和DL是方法、工具。ML是AI的一个子集,DL是ML的一个组成部分,即从宏观角度来讲。AI>ML>DL。

 

ML也是写代码,那它和传统的编程到底有什么差别?

举个简单的例子。

咱们国内习惯使用摄氏度来表示温度,国外很多国家则习惯使用华氏度,假设现在有个需求,就是要将咱们的摄氏度转成华氏度。

摄氏度与华氏度对应图

摄氏度华氏度
-40-40
-1014
032
846
1559
2272
38?

那么,(在不能使用搜索引擎查询两者的转换公式的前提下)传统的编程会怎么做呢?

首先,当然就是找出两者的规律,数学还过得去的同学,应该就可以得到 f = c * 1.8 + 32 这条公式,然后写代码就是再简单不过的事情了。

如果你说你实在没办法找出两者的规律,那么这个时候,ML其实就是你最好的选择了。如果你手上已经有了个好模型,将你的输入(摄氏度)、输出(华氏度)告诉它,它就能自行把这个规律找出来,虽然并不一定就能得到 f = c * 1.8 + 32 这条公式,但是也至少可以得到一个误差较小的公式出来。然后剩下的代码,当然也是非常easy的事情啦。

也就是说,传统的编程,是你要plan好所有的步骤和公式,让机器按着你定的规则按部就班的进行计算,得到你想要的输出。
但是ML不同,它根据你编写的模型,通过计算你给定的数据集(就是已知的输入输出),来得到自己的一条公式,然后你再拿着这个公式去计算,得到你的输出。

 

那么ML的优势在哪里呢?

通过上面的例子,可能大家都能够猜到一些了,ML第一个优势就是能帮你解决你作为编程人员不知道怎么用人工方法去解决的问题,当然了,上面的例子很多人都能自己解决,我说的其实是人脸识别,语音识别,图像识别,自然语言处理等等这些传统编程很难解决的问题。

第二个优势,它可以缩短你的编程时间。假设我现在要做一个自动纠正错误英文单词拼写的程序。这个当然是可以用传统编程实现的,但是前提是你还需要花大量的时间去研究英文的拼写规范,然后通过大量的判断,将所有规则穷举出来。或者,你只要使用现成的机器学习工具,给它提供一些样本,这样就可以在很短时间内得到一个可靠的程序了。你会选择哪种方式?

第三个优势,它可以轻易移植到新的需求上。假设你已经成功地做出了这个英文单词纠错程序,并且大获成功,老板跟你说要趁热打铁,把它做成100种语言的纠错程序。如果你是用传统编程做的,你是不是有辞职的冲动了?但是如果你是用机器学习做的,那你只要给它提供100种语言的样本,它照样能自己把规律找出来,在极短的时间内得到一个程序。

 

此外,机器学习其实可以改变你思考问题的方式。软件工程师习惯性是用逻辑和数学思维来思考问题的,但是机器学习使得我们的关注点从数学转移到了自然科学上。我们观察着这个未知的世界,开展我们的研究,并且使用统计信息(而非逻辑)来分析我们的实验结果。像数据科学家一样去思考,可以极大地开阔我们的视野。

如果你听了我的描(xiā)述(chě),觉得好像挺有意思,就一同来学习一下吧。

由于本人也是个ML初学者,有不足或者错误的地方,也欢迎在下方留言。

转载于:https://my.oschina.net/lonelycode/blog/3100469

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值