20、Wi-Fi 人体手势识别技术:Widar3.0 系统解析

Wi-Fi 人体手势识别技术:Widar3.0 系统解析

1. 现有跨域学习的困境与 Widar3.0 的诞生

在跨域学习的场景中,对抗学习在缺乏目标域数据时,其准确性会显著下降。这表明现有的跨域学习解决方案存在不足,需要额外的数据收集和训练工作。为了解决这一问题,我们需要一种新的与域无关的特征,基于此可以构建一个通用模型,从而节省大量的数据收集和训练成本。Widar3.0 正是为了开发和利用身体坐标速度轮廓(BVP)来解决这一问题而设计的。

2. Widar3.0 系统概述

Widar3.0 是一个使用现成 Wi-Fi 设备的跨域手势识别系统。其系统结构如下:
- 数据采集 :在监测区域周围部署多个无线链路,接收器获取被用户干扰的无线信号,并记录其信道状态信息(CSI)测量值。
- CSI 预处理 :对采集到的 CSI 数据进行预处理,去除幅度噪声和相位偏移。
- BVP 生成模块
1. 对 CSI 系列进行小段划分。
2. 准备三个中间结果:通过对 CSI 系列进行时频分析估计多普勒频移(DFS)轮廓;通过运动跟踪方法计算人的方向和位置信息。
3. 应用基于压缩感知的优化方法估计每个 CSI 段的 BVP。
- 手势识别模块
1. 对 BVP 进行归一化处理,去除实例和人员的无关变化。
2. 将归一化后的 BVP 系列输入到时空深度神经网络(DNN)中。
3. DNN 的卷积层提取每个 BVP 内的高级空间特征。 <

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值